
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 3, MARCH 2015 451

Distributed Feature Representations
for Dependency Parsing

Wenliang Chen, Min Zhang, Member, IEEE, and Yue Zhang

Abstract—This paper presents an approach to automatically
learning distributed representations for features to address the
feature sparseness problem for dependency parsing. Borrowing
terminologies from word embeddings, we call the feature rep-
resentation feature embeddings. In our approach, the feature
embeddings are inferred from large amounts of auto-parsed data.
First, the sentences in raw data are parsed by a baseline system
and we obtain dependency trees. Then, we represent each model
feature using the surrounding features on the dependency trees.
Based on the representation of surrounding context, we proposed
two learning methods to infer feature embeddings. Finally, based
on feature embeddings, we present a set of new features for
graph-based dependency parsing models. The new parsers can
not only make full use of well-established hand-designed features
but also benefit from the hidden-class representations of features.
Experiments on the standard Chinese and English data sets show
that the new parser achieves significant performance improve-
ments over a strong baseline.
Index Terms—Natural language processing, dependency

parsing, feature embeddings, semi-supervised approach.

I. INTRODUCTION

I N RECENT years, discriminative supervised models have
achieved much progresses in dependency parsing [1]. The

discriminative models typically use millions of features gener-
ated from a small set of training data. This setting has shown
strong discriminative power in previous studies [2]–[5]. How-
ever, binary features extracted from a limited size training data
(typically less than fifty thousands of sentences for dependency
parsing) suffer from data sparseness: for features that are rare in
the labeled training data, the corresponding model parameters
could be poorly estimated.
Another limitation on features is that many are typically de-

rived by (manual) combination of atomic features. For example,
given the head word () and part-of-speech tag (), depen-
dent word () and part-of-speech tag (), and the label () of

Manuscript received July 25, 2014; revised October 15, 2014; accepted Oc-
tober 18, 2014. Date of current version February 26, 2015. This work was sup-
ported in part by the Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization, Jiangsu Province, China. Thework ofW. Chen and
M. Zhang was supported by the National Natural Science Foundation of China
under Grants 61203314, 61373095, and 61432013. The work of Y. Zhang was
supported by MOE grant 2012-T2-2-163. The guest editor coordinating the re-
view of this manuscript and approving it for publication was Prof. Haizhou Li.
(Corresponding author: M. Zhang.)
W. Chen and M. Zhang are with the School of Computer Science and Tech-

nology, Soochow University, Suzhou, China (e-mail: chenwenliang@gmail.
com; zhangminmt@hotmail.com).
Y. Zhang is with Singapore University of Technology and Design, Singapore

(e-mail: yue_zhang@sutd.edu.sg).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASLP.2014.2365359

a dependency arc, state-of-the-art dependency parsers can have
the combined features: [], [], [],
and so on, in addition to the atomic features: [], [], etc.
Such combination is necessary for high accuracies because the
dominant approach uses linear models. However, the correla-
tions between features are still unknown.
We tackle the above issues by borrowing solutions from

word representations, which have been intensely studied in the
NLP community [6]. In particular, distributed representations
of words have been used for many NLP problems, which
represent a word by information from the words it frequently
co-occurs with [7]–[11]. The representation can be learned
from large amounts of raw sentences, and hence used to reduce
OOV rates in test data. In addition, since the representation
of each word carries information about its context words, it
can also be used to calculate word similarity [12], or used as
additional semantic features [13].
In this article, we move beyond word embeddings and con-

sider the vector representation of features for discriminative
linear dependency parsing models. Our target is to learn dis-
tributed feature representations (referred to as feature embed-
dings) that can not only make full use of well-established hand-
designed features but also benefit from hidden representations
of features. The idea behind word embeddings is the distri-
butional hypothesis in linguistics, which states that words ap-
pearing in similar contexts tend to have similar meanings [14].
Similarly, we believe that features that occur in similar contexts
on dependency trees tend to share common properties.
Compared with the task of learning word embeddings, the

task of learning feature embeddings is more difficult because
the size of features is much larger than the vocabulary size and
tree structures are more complex than word sequences. This re-
quires us to find an effective inference algorithm to learn fea-
ture embeddings. [11] and [12] introduce efficient models to
learn high-quality word embeddings from large amount of raw
text data, implemented in word2vec.1 We adapt their methods
to learn feature embeddings. In our approach, we first propose
a novel approach to represent features. We use two learning
models, similar to the CBOW and Skip-gram models proposed
by [12], to infer distributed representations for features. Based
on the feature embeddings, a set of new features are designed
and incorporated into the parsing models.
To demonstrate the effectiveness of the feature embeddings,

we apply them to a graph-based parsing model [15]. We con-
duct experiments on the standard data sets from the Penn Eng-
lish Treebank [16] and the Chinese Treebank Version 5.1 [17].

1https://code.google.com/p/word2vec/

2329-9290 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

452 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 3, MARCH 2015

Fig. 1. Example for dependency parsing task.

The results indicate that our proposed approach significantly im-
proves the accuracy.
This article is a significant extension of a conference version

[18]. We add a new learning model to infer feature embeddings,
new experimental results, a comprehensive description of the
parsing models, and more details about our method.
The rest of this article is organized as follows. Section II in-

troduces the background of graph-based dependency parsing.
Section III describes the two models to infer feature em-
beddings. Section IV describes the parser with the embed-
ding-based features. Section V shows the implementation
details of our systems. Section VI describes the experimental
settings and reports the experimental results on the English and
Chinese data sets. Section VII discusses related work. Finally,
in Section VIII we draw conclusions on the proposed approach.

II. BACKGROUND OF DEPENDENCY PARSING
In this section, we introduce the background of dependency

parsing and build a baseline parser based on the graph-based
parsing model proposed by [19].

A. Dependency Parsing

Given an input sentence , the task of dependency parsing
is to build a dependency tree . Fig. 1 shows an example of
the input and output of dependency parsing, where an arc be-
tween two words indicates a dependency relation between them,
“ROOT” is an artificial root token inserted at the beginning of
the sentence and is not to be a dependent of any other token in
the sentence. For example, the arc between “ate” and “fish” in-
dicates a dependency where “ate” is the head and “fish” is the
dependent. The arc between “ROOT” and “ate” indicates that
“ate” is the ROOT of the sentence.

is denoted by , where is
ROOT and refers to a word. We have a set of training data

to train a parser. The
task of dependency parsing is to find which has the highest
score for ,

where is the set of all the valid dependency trees for .
For dependency parsing, there are two major models [20]: the

transition-based model and graph-based model, which showed
comparable accuracies for a wide range of languages [1], [4],
[5], [21]. The main difference between the two models is on
whether the parse tree is scored directly (i.e. graph-based) or
indirectly via a sequence of transition actions (i.e. transition-

based). In this article, we apply feature embeddings to a graph-
based model.

B. Graph-Based Parsing Model
In the graph-based model, we use an ordered pair

to define a dependency relation in tree from
word to word (is the head and is the depen-
dent), and to define a graph that consists of a set of nodes

and a set of arcs (edges)
. The

parsing model of [19] searches for the maximum spanning
tree (MST) in graph . We denote as the set of all
the subgraphs of that are valid dependency trees [15] for
sentence .
We define the score of a dependency tree to be

the sum of the subgraph scores,

(1)

where is a spanning subgraph of , which can be a single arc or
two adjacent arcs. In this article we assume that the dependency
tree is a spanning projective tree. The model scores each sub-
graph using a linear feature vector model representation. Then
scoring function is,

(2)

where is a high-dimensional feature vector based on fea-
tures defined over and , and refers to the weights for the
features.
The maximum spanning tree is the highest scoring tree in

. The task of the decoding algorithms for an input sen-
tence is to find , where

(3)

C. Baseline Parser
In our system, we use the decoding algorithm proposed by [2]

and learn feature weights using the Margin Infused Relaxed
Algorithm (MIRA) [19], [22]. The decoding algorithm is an ex-
tension of the parsing algorithm of [23], which was a modified
version of the CKY chart parsing algorithm. The algorithm in-
dependently parses the left and right dependents of a word and
combines them later. There are two types of chart items [24]: 1)
a complete item in which the words are unable to accept more
dependents in a certain direction; and 2) an incomplete item in
which the words can accept more dependents in a certain direc-
tion. In the algorithm, we create both types of chart items with
two directions for all the word pairs in a given sentence. The di-
rection of a dependency is from the head to the dependent. The
right (left) direction indicates the dependent is on the right (left)
side of the head. Larger chart items are created from pairs of
smaller ones in a bottom-up style.
For graph-based parsing models, previous studies have de-

fined different sets of features, including the first-order features,

CHEN et al.: DISTRIBUTED FEATURE REPRESENTATIONS FOR DEPENDENCY PARSING 453

TABLE I
FE-BASED TEMPLATES

Fig. 2. Relations of tokens in dependency structures.

the second-order parent-siblings features, and the second-order
parent-child-grandchild features [2], [19], [24]. Fig. 2 shows the
relations of tokens in dependency structures, where and refer
to the head, the dependent, respectively, refers to 's sibling or
child, the structure of and is first-order, the one of , , and
is second-order parent-siblings structure, and the one of , ,

and (or) is second-order parent-child-grandchild struc-
ture. [4] uses a richer set of features based on the above sets.
We further extend the features by introducing more lexical fea-
tures to the base features. The base feature templates are listed
in Table I, where refers to the word between and , ()
refers to the next (previous) word, and refer to the surface
word and part-of-speech tag, respectively, refers to the sur-
face word or part-of-speech tag, is the direction of the
dependency relation between and , and is the di-
rections of the relation among , , and .
We train a parser with the base features as the Baseline parser,

and define as the base features and as the corre-
sponding weights. The scoring function becomes,

(4)

III. TWO MODELS TO INFER FEATURE EMBEDDINGS

Our goal is to learn a distributed representation for features,
which is dense and low dimensional. We call the distributed fea-
ture representation feature embeddings. In the representation,
each dimension represents a hidden-class of the features and
is expected to capture a type of similarities or share properties
among the features.
Our feature embeddings are inspired by word embeddings al-

though there are several differences. Word embeddings can be

induced using neural language models, which use neural net-
works as the underlying predictive model [25]. However, the
training speed of neural language models is usually slow de-
spite many approaches to improve it recently. In addition, a
neural language model requires a segmental context, which is
not available for tree-structured features. [11] and [12] introduce
the continuous Bag-of-Words (CBOW) and skip-gram models,
which are efficient methods to directly learn high-quality word
embeddings from large amounts of unstructured raw text. Since
the two models do not involve dense matrix multiplications, the
training speed is extremely fast.
We adapt the CBOW and skip-gram models for learning

feature embeddings from large amounts of automatically
parsed dependency tree data. Different from word embeddings,
the input of our approach is features rather than words, and
the feature representations are generated from tree structures
instead of word sequences. Since the size of features is much
larger than the vocabulary of words, feature embeddings result
in a high computational cost. Thus in addition, we use the speed
up techniques including subsampling of frequent features and
Negative sampling in the learning stage [11].

A. Surrounding Feature Context
Given a sentence , , …, and its corresponding

dependency tree , we can generate features based on the tem-
plates (defined in Table I). Fig. 3 shows an example of gener-
ating first-order features for each dependency relation. We de-
fine the -step context as a set of relations reachable within

steps from the current relation. Here one step refers to one
dependency arc. For instance, the one-step context of “with
fork” includes the surrounding relations that can be reached in
one step such as “ate with” and “a fork”, as shown in Fig. 4.
In the figure, for the current relation between “with” and “fork”,
the relation between “ate” and “with” is in the one-step context,
while the relation between “He” and “ate” is in the two-step con-
text because it can be reached by two steps. A larger results
in more contextual features and thus might lead to a higher ac-
curacy, but at the expense of training speed.
Based on the -step context, we use surrounding features to

represent the features on the current dependency relations. The

454 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 3, MARCH 2015

Fig. 3. Example of generating first-order features for dependency arcs.

Fig. 4. An example of one-step context.

surrounding features are defined on the relations in the -step
context. Take one-step context as an example. Fig. 5 shows
the representations for the current relation between “with” and
“fork” in Fig. 4. For the current relation and the relations in
its one-step context, we generate the features based on the fea-
ture templates defined in Table I. In Fig. 5 the current feature
“f1:with, fork, R” can be represented by the surrounding fea-
tures, “cf1:ate, with, R” and “cf1: fork, a, L” based on the tem-
plate “T1: , , d()”. Thus, all the features on the cur-
rent relation are represented by the features on the relations in
the one-step context. Note that to reduce computational cost,
we generate every feature and its contextual features based on
the same feature template. In the experiments, we use one-step
context to represent the features, so that feature embeddings are
defined over this context.

B. Two Models

In this section, we adapt the models of [11] and [12] to infer
feature embeddings. Based on the representation of surrounding

Fig. 5. One-step surrounding features.

context, the input of learning models is a set of features shown
in Fig. 6 and the output is feature embeddings. For each depen-
dency tree in large amounts of auto-parsed data, we generate the
base features that are associated with their surrounding contex-
tual features. Then all the base features are put into a set. The
learning models take the items one by one from the set during
training.
Continuous Bag-of-Features (CBOF) Model: The idea of

continuous Bag-of-Features model is inspired by the contin-
uous Bag-of-Words model used in [12]. In our model, we use
the associated surrounding features in the context to predict the
current feature as shown in Fig. 7. In the figure, we have a set
of surrounding features to predict
the current feature . Similar to the CBOW model, we do not
consider the order of features in the context in the prediction.
In the CBOF model, we try to find feature representations that
are useful for predicting the features on the current relation in
a dependency tree. Given sentences and their corresponding
dependency trees , the objective of the CBOF model is to
maximize the log-likelihood over the data,

(5)

where is a set of features generated from tree , is the
set of surrounding features in the -step context of the feature

can be computed by the softmax function [11] for
which the input is and the output is ,

(6)

where and are the input and output vector representations
of , and is the number of features in the feature table. The
formulation is impractical for large data because the number of
features is large (in the millions) and the computational cost for
training the softmax structure is too high.
Several methods have been studied to make the training of

embeddings feasible, including the hierarchical softmax vari-
ation [26]–[28], which reduces the computation cost, and the
Negative sampling method, which is a simplified variation of

CHEN et al.: DISTRIBUTED FEATURE REPRESENTATIONS FOR DEPENDENCY PARSING 455

Fig. 6. Input feature set.

Fig. 7. The CBOF model.

Noise Contrastive Estimation [29], [30]. To compute the prob-
abilities efficiently, we use the Negative sampling method pro-
posed by [11], which approximates the probability by the correct
example and negative samples for each instance. The formu-
lation to compute is,

(7)

where and is the noise distribu-
tion on the data. Following the setting of [11], we set as 5 in
our experiments.
We predict the features one by one in the set of features. Sto-

chastic gradient ascent is used to perform the following iterative
update after predicting the feature,

(8)

where is the learning rate and includes the parameters of
CBOW and the vector representations of features. The initial
value of is 0.025. If the log-likelihood does not improve sig-
nificantly after one update, the rate is halved [31]. If the proba-
bility of the data does not improve again, the training stops.

Fig. 8. The Skip-gram model.

Skip-Gram Model: The Skip-gram method models feature
contexts in a different angle. In the Skip-gram model, we use
the features on the current dependency arc to predict the sur-
rounding features, as shown in Fig. 8. In the figure, we use the
current feature to predict a set of surrounding features

. Given sentences and their corre-
sponding dependency trees , the objective of the Skip-gram
model is to maximize the log-likelihood,

(9)

where is a set of features generated from tree and
is the set of surrounding features in the -step context of fea-
ture . We also use the Negative sampling method to compute
the log-likelihood, and the procedure of generating feature em-
beddings of the Skip-gram model is similar to the one of model
CBOF.
The formulation to compute is,

(10)

where and is the noise distribu-
tion on the data. Following the setting of [11], we set to 5 in
our experiments.
We also predict the set of features one by one. Stochastic

gradient ascent is used to perform the following iterative update
after predicting the th feature,

(11)

where is the learning rate and includes the parameters of the
model and the vector representations of features. We compare
the effectiveness of the two models in the experiments.

C. Distributed Representation
Based on the proposed surrounding context, we use the CBOF

and Skip-gram models with the help of the Negative sampling
method to learn feature embeddings. For each base template

456 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 3, MARCH 2015

TABLE II
INFORMATION OF RAW DATA

, the distributed representations are stored in a matrix
, where is the number of dimensions (to be chosen in

the experiments) and is the size of the features for .
For each feature , its vector is .

IV. PARSING WITH FEATURE EMBEDDINGS

In this section, we discuss how to apply the feature embed-
dings to dependency parsing.

A. FE-Based Feature Templates

The base parsing model contains only binary features, while
the values in the feature embedding representation are real num-
bers that are not in a bounded range. If the range of the values
is too large, they will exert too much more influence than the
binary features. We confirm this in the preliminary experiments
in which we used the continuous values directly, but obtained
worse results. Thus, we define a function (in Section V)
to convert the real values to discrete values. The vector

is converted into .
We define a set of new templates for the parsing models, cap-

turing feature embedding information, and being used in ad-
dition to the base features. Table II shows the new templates,
where refers to the base template type of feature . When
generating the FE-based features, we do not generate any fea-
ture related to the surface form of the head if the word is not
one of the Top-N most frequent words in the training data. This
method can reduce the size of the feature sets and then speed
up the system. After tuning on the development sets2, we used
Top-1000 for the experiments for this article.

B. FE Parser

We combine the base features with the new features by a new
scoring function,

(12)

where refers to the base features, refers to
the FE-based features, and and are their corresponding
weights, respectively. The feature weights are learned during
training using MIRA [19], [22].
We use the same decoding algorithm in the new parser as

in the Baseline parser. The new parser is referred to as the FE
Parser.

V. IMPLEMENTATION DETAILS

A. Parsers

We implement the parsers based on the work of [2] with the
base features defined in Table I. We train a second-order parser
on the training data and use it to process the raw data.

2The setting of Top-N only slightly affects the accuracy.

Fig. 9. An example of generating FE-based features.

B. Conversion Functions
There are various functions to convert the real values in the

vectors into discrete values. Here, we use a simple method. First,
for the th base template, the values in the th dimension are
sorted in decreasing order into the list . We divide the list
into two halves for positive () and negative (), respec-
tively. We define two functions. In the first one, the function is
defined as,

is in top
is in bottom
is in top

is in bottom

In the second one, we define the function as,

is in top
is in bottom

In , we only consider the values (“ ” and “ ”), which
have strong opinions (positive or negative) on dimensions and
omit the values which are close to zero. We refer the systems
with as M1 and the ones with as M2.

C. Generating FE-Based Features
We use an example to demonstrate how to generate new fea-

tures based on the feature templates in practice. Suppose that
we have a sentence “I ate the meat with a fork.” and want to
generate FE-based features for the relation between “with” and
“fork”, where “with” is the head and “fork” is the dependent.
Fig. 9 shows the example.
We demonstrate the generating procedure using the template

“ “ (the first base template in Table I),
which contains the surface forms of the head, the dependent, and
the direction of the dependency from to . We can have a base
feature “with, fork, R”, where “R” refers to the right arc direc-
tion. By looking up the matrix , we can get the embedding
vector for the feature: . According
to , we obtain a new vector .
Finally, we have a set of new features:

. In this way, we can
generate all the new features for the graph-based model. The
number of new features is relative small, totally for
M1 and for M2, respectively, where is the set of
base templates. and are often small (in the hundreds).

CHEN et al.: DISTRIBUTED FEATURE REPRESENTATIONS FOR DEPENDENCY PARSING 457

TABLE III
RESULTS ON ENGLISH DATA. Not Available

TABLE IV
RESULTS ON CHINESE DATA

VI. EXPERIMENTS

We conducted experiments on the standard data sets of Eng-
lish and Chinese, respectively.

A. Data Sets

We used the Penn Treebank (PTB) [16] to generate the Eng-
lish data sets and the Chinese Treebank version 5.1 (CTB5) [17]
to generate the Chinese data sets. “Penn2Malt”3 was used to
convert the data into dependency structures with the English
head rules of [32] and the Chinese head rules of [33]. The de-
tails of data splits are listed in Table III, where the data partition
of Chinese were chosen to match previous work [34]–[36].
Following the work of [13], we used a tagger trained on

training data to provide part-of-speech (POS) tags for the devel-
opment and test sets, and used 10-way jackknifing to generate
part-of-speech tags for the training set. For English we used the
MXPOST [37] tagger and for Chinese we used a CRF-based
tagger with the feature templates defined in [38]. We used
gold-standard segmentation in the CTB5 experiments. The
accuracies of part-of-speech tagging are 97.32% for English
and 93.61% for Chinese on the test sets, respectively.
To obtain feature contexts, we processed raw data to get de-

pendency trees. For English, we used the BLLIP WSJ Corpus
Release 1 [39].4 For Chinese, we used the Xinhua portion of
Chinese Gigaword5 Version 2.0 (LDC2009T 14) [40]. The sta-
tistical information of raw data sets is listed in Table IV. The
MXPOST part-of-speech tagger and the Baseline dependency
parser trained on the training data were used to process the
sentences of the BLLIP WSJ corpus. For Chinese, we need to
perform word segmentation and part-of-speech tagging before
parsing. The MMA system [41] trained on the training data was
used to perform word segmentation and tagging, and the Base-
line parser was used to parse the sentences in the Gigaword
corpus.
We report the parser quality by the unlabeled attachment

score (UAS), i.e. the percentage of tokens (excluding all punc-
tuation tokens) with the correct HEAD. We also report the
scores on complete dependency trees evaluation (COMP).

3http://w3.msi.vxu.se/nivre/research/Penn2Malt.html
4We excluded the texts of PTB from the BLLIP WSJ Corpus.
5We excluded the texts of CTB5 from the Gigaword data.

Fig. 10. Effect of different sizes of embeddings on the development data.

B. Development Experiments
In this section, we use the development data set of English

to investigate the effect of different vector sizes of feature em-
beddings and compare the systems with M1 and M2 (defined
in Section V-B). To reduce the training time, we used 10% of
labeled training data to train the parsing models.
[6] reported that the optimal size of word embedding dimen-

sions was task-specific for NLP tasks. Here, we also investi-
gated the effect of different sizes of embedding dimensions on
dependency parsing. Fig. 10 shows the effect on UAS scores
as we varied the vector sizes, where CBOF-M1/M2 refers to
the system with CBOF model and M1/M2, SKIP-M1/M2 refer
to the system with Skip-gram model and M1/M2 respectively.
The systems with FE-based features always outperformed the
Baseline. The curves of the parsers with M2 were almost flat
and we found that the parsers with M1 performed worse as
the sizes increased. Overall, the systems with M2 performed
better than the ones with M1. For SKIP-M2, 10-dimensional
embeddings achieved the highest score among all the systems.
For CBOF-M2, 5-dimensional embeddings performed the best
among the CBOF-based systems.
Based on the above observations, we chose two systems for

further evaluations: 5-dimensional embeddings for CBOF-M2
and 10-dimensional embeddings for SKIP-M2.

C. Main Results on English Data
We trained CBOF-M2 and SKIP-M2 on the full training

data and evaluated them on the testing data for English. The
results are shown in Table V. The parsers using the FE-based
features consistently outperformed the Baseline. For SKIP-M2
and CBOF-M2, we obtained absolute improvements of 0.96
and 0.84 UAS points, respectively. As for the COMP scores,
SKIP-M2 achieved absolute improvement of 2.74 over the
Baseline. The improvements were significant by McNemar’s
Test () [42]. We also added the cluster-based features
of [13] to our baseline system listed as “CLU” in Table V. The
parsers using the FE-based features outperform CLU too.
We listed the performance of the related systems in Table V,

where Koo2010 refers to the supervised system of [3], which
is based on a third-order graph-based model, Zhang2011 refers
to the supervised system of [5], which uses rich non-local
features in a transition-based model, Koo2008 refers to the
semi-supervised system of [13], which uses a second-order
graph-based model together with Brown word-cluster based

458 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 3, MARCH 2015

TABLE V
RESULTS ON ENGLISH DATA. Not Available

TABLE VI
RESULTS ON CHINESE DATA

features, Suzuki2009 refers to the semi-supervised system
of [43], which uses a semi-supervised structured conditional
model [44], Chen2009 refers to a semi-supervised system [45]
that learns frequency-based subtree features from auto-parsed
data, Zhou2011 refers to the semi-supervised system of [46],
which exploits web-derived selectional preference, Suzuki2011
refers to the semi-supervised system of [47], which uses a
condensed feature representation, and Chen2013 refers to the
semi-supervised system of [48], which uses frequency-based
meta-features learned from auto-parsed data.
From the table, we found that our FE parsers obtained the

comparable accuracy with the previous state-of-the-art systems.
Suzuki2011 [47] reported the best reported result by combining
their method with the method of Koo et al. [13]. We believe
that the performance of our parser can be further enhanced by
integrating their methods.

D. Main Results on Chinese Data
We also evaluated the systems on the testing data for Chinese.

The results are shown in Table VI. We also added the cluster-
based features of [13] to our baseline system listed as “CLU” in
Table VI. Similar to the results on English, the parsers using the
FE-based features consistently outperformed the Baselines.
We listed the performance of the related systems6 on Chi-

nese in Table VI, where Li2011 refers to the system of [35], Ha-
tori2011 refers to the system of [36], Li2012 refers to the unla-
beled parser of [50], and Chen2013 refers to the system of [48].
From the table, we found that the scores of our FE parsers were
higher than most of the related systems and comparable with
the results of Chen2013, which was the best reported scores so

6We did not include the result (83.96) of [49] because their part-of-speech
tagging accuracy is 97.7%, much higher than ours and other work. Their tagger
includes rich external resources.

far. We believe that the performance of our parser can be further
enhanced by enlarging X-step contexts and learn better feature
embeddings.

VII. RELATED WORK

Learning feature embeddings are related to two lines of re-
search: deep learning models for NLP, and semi-supervised de-
pendency parsing.
Recent studies used deep learning models in a variety of

NLP tasks. [6] applied word embeddings to chunking and
Named Entity Recognition (NER). [9] designed a unified
neural network to learn distributed representations that were
useful for part-of-speech tagging, chunking, NER, and se-
mantic role labeling. They tried to avoid task-specific feature
engineering. [51] proposed a Compositional Vector Grammar,
which combined PCFGs with distributed word representations.
[52] investigated Chinese character embeddings for Chinese
word segmentation and part-of-speech tagging. [49] directly
applied word embeddings to Chinese dependency parsing. [53]
inferred word embeddings based on contexts extracted from
dependency trees. In most cases, words or characters were the
inputs to the learning systems and they applied word/character
embeddings to their tasks. Our work is different from theirs in
that we explore distributed representations at the feature level
and we can make full use of well-established hand-designed
features.
In our work, we use large amounts of raw data to infer feature

embeddings. There are several previous studies relevant to using
raw data on dependency parsing. [13] used the Brown algo-
rithm to learn word clusters from a large amount of unannotated
data and defined a set of word cluster-based features for depen-
dency parsing models. [43] adapted a Semi-supervised Struc-
tured ConditionalModel (SS-SCM) [44] to dependency parsing.
[47] reported the best results so far on the standard test sets of
PTB using a condensed feature representation combined with
the word cluster-based features of [13]. [48] mapped the base
features into predefined types using the information of frequen-
cies counted in large amounts of auto-parsed data. The work of
[47] and [48] were to perform feature clustering. [54] presented
a semi-supervised learning algorithm named alternating struc-
ture optimization for text chunking. They used a large projection
matrix to map sparse base features into a small number of high
level features over a large number of auxiliary problems. One
of the advantages of our approach is that it is simpler and more
general than that of [54]. Our approach can easily be applied to
other tasks by defining new feature contexts.

VIII. CONCLUSION
In this article, we have presented an approach to learning fea-

ture embeddings for dependency parsing from large amounts
of raw data. The raw sentences were first parsed by a baseline
system and then we obtained an auto-parsed data. Each model
feature was represented by the surrounding features on the de-
pendency trees. Based on the representation of surrounding con-
text, we proposed two learning methods to infer feature embed-
dings. Finally, we represented a set of new features based on the
learned feature embeddings, which was used with the base fea-
tures in a graph-based model. When tested on both English and

CHEN et al.: DISTRIBUTED FEATURE REPRESENTATIONS FOR DEPENDENCY PARSING 459

Chinese, our method significantly improved the performance
over strong baselines and provided comparable accuracies with
the best systems in the literature.
For future work, there are several ways in which this research

could be extended. First, we plan to use a larger data to infer
the feature embeddings. Second, we could apply the proposed
approach to other languages (for example, Japanese). Third, we
could extend to labeled parsing instead of unlabeled parsing. Fi-
nally, we could extend the approach to the constituency parsing
task.

ACKNOWLEDGMENT

We would also thank the anonymous reviewers for their de-
tailed comments, which have helped us to improve the quality
of this work.

REFERENCES
[1] J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel, and D.

Yuret, “The CoNLL 2007shared task on dependency parsing,” Proc.
CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 915–932,
2007.

[2] X. Carreras, “Experiments with a higher-order projective dependency
parser,” in Proc. CoNLL Shared Task Session of EMNLP-CoNLL,
Prague, Czech Republic, Jun. 2007, pp. 957–961.

[3] T. Koo and M. Collins, “Efficient third-order dependency parsers,” in
Proc. ACL '10, Uppsala, Sweden, Jul. 2010, pp. 1–11.

[4] B. Bohnet, “Top accuracy and fast dependency parsing is not a con-
tradiction,” in Proc. 23rd Int. Conf. Comput. Linguist. (Coling '10),
Beijing, China, Aug. 2010, pp. 89–97 [Online]. Available: http://www.
aclweb.org/anthology/C10-1011

[5] Y. Zhang and J. Nivre, “Transition-based dependency parsing with
rich non-local features,” in Proc. ACL-HLT2011, Portland, OR, USA,
Jun. 2011, pp. 188–193 [Online]. Available: http://www.aclweb.org/
anthology/P11-2033

[6] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: A simple
and general method for semi-supervised learning,” in Proc. ACL '10,
2010, pp. 384–394.

[7] D. Lin, “Using syntactic dependency as local context to resolve word
sense ambiguity,” in Proc. 35th Annu. Meeting Assoc. Comput. Lin-
guist., Madrid, Spain, Jul. 1997, pp. 64–71 [Online]. Available: http://
www.aclweb.org/anthology/P97-1009

[8] J. Curran, “Supersense tagging of unknown nouns using semantic
similarity,” in Proc. 43rd Annu. Meeting Assoc. Comput. Linguist.
(ACL’05), Ann Arbor, MI, USA, Jun. 2005, pp. 26–33 [Online].
Available: http://www.aclweb.org/anthology/P05-1004

[9] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P.
Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12, pp. 2493–2537, 2011.

[10] Y. Bengio, “Learning deep architectures for AI,” Foundat. Trends
Mach. Learn., vol. 2, no. 1, pp. 1–127, 2009.

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” Adv. Neural Inf. Process. Syst. 26, pp. 3111–3119,
2013 [Online]. Available: http://media.nips.cc/nipsbooks/nipspa-
pers/paper_files/nips26/1421.pdf

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[13] T. Koo, X. Carreras, and M. Collins, “Simple semi-supervised depen-
dency parsing,” in Proc. ACL-08: HLT, Columbus, OH, USA, Jun.
2008.

[14] J. R. Firth, “A synopsis of linguistic theory,” , pp. 1930–1955, 1957.
[15] R. McDonald and J. Nivre, “Characterizing the errors of data-driven

dependency parsing models,” in Proc. EMNLP-CoNLL, 2007, pp.
122–131.

[16] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn Treebank,” Comput. Lin-
guist., vol. 19, no. 2, pp. 313–330, 1993.

[17] N. Xue, F. Xia, F. dong Chiou, and M. Palmer, “Building a large anno-
tated Chinese corpus: The penn Chinese treebank,” J. Nat. Lang. Eng.,
vol. 11, no. 2, pp. 207–238, 2005.

[18] W. Chen, Y. Zhang, and M. Zhang, “Feature embeddings for depen-
dency parsing,” in Proc. Coling '14, Aug. 2014.

[19] R. McDonald, K. Crammer, and F. Pereira, “Online large-margin
training of dependency parsers,” in Proc. ACL '05, 2005, pp. 91–98.

[20] J. Nivre and R. McDonald, “Integrating graph-based and transition-
based dependency parsers,” in Proc. ACL-08: HLT, Columbus, OH,
USA, Jun. 2008.

[21] B. Bohnet and J. Nivre, “A transition-based system for joint
part-of-speech tagging and labeled non-projective dependency
parsing,” in Proc. EMNLP-CoNLL '12, 2012, pp. 1455–1465.

[22] K. Crammer and Y. Singer, “Ultraconservative online algorithms for
multiclass problems,” J. Mach. Learn. Res., vol. 3, pp. 951–991, 2003.

[23] J. Eisner, “Three new probabilistic models for dependency parsing: An
exploration,” in Proc. COLING '96, 1996, pp. 340–345.

[24] R. McDonald and F. Pereira, “Online learning of approximate depen-
dency parsing algorithms,” in Proc. EACL '06, 2006, pp. 81–88.

[25] Y. Bengio, “Neural net language models,” Scholarpedia, p. 3881,
2008.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Proc. ICLR Workshop, 2013.

[27] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network
language model,” in Proc. AISTATS, 2005, pp. 246–252.

[28] A. Mnih and G. Hinton, “A scalable hierarchical distributed language
model,” in Proc. NIPS, 2009, pp. 1081–1088.

[29] M. Gutmann and A. Hyvarinen, “Noise-contrastive estimation of un-
normalized statistical models, with applications to natural image sta-
tistica,” J. Mach. Learn. Res., vol. 13, pp. 307–361, 2012.

[30] A. Mhih and H. W. Teh, “A fast and simple algorithm for training
neural probabilistic language models,” in Proc. ICML, 2012.

[31] T. Mikolov, J. Kopecky, L. Burget, O. Glembek, and J. Cernocky,
“Neural network based language models for highly inflective lan-
guages,” in Proc. ICASSP '09, 2009, pp. 4725–4728.

[32] H. Yamada and Y. Matsumoto, “Statistical dependency analysis with
support vector machines,” in Proc. IWPT '03, 2003, pp. 195–206.

[33] Y. Zhang and S. Clark, “A tale of two parsers: Investigating and com-
bining graph-based and transition-based dependency parsing,” in Proc.
EMNLP '08, Honolulu, HI, USA, Oct. 2008, pp. 562–571.

[34] X. Duan, J. Zhao, and B. Xu, “Probabilistic models for action-based
Chinese dependency parsing,” in Proc. ECML/ECPPKDD, Warsaw,
Poland, 2007.

[35] Z. Li, M. Zhang, W. Che, T. Liu, W. Chen, and H. Li, “Joint models
for Chinese POS tagging and dependency parsing,” in Proc. EMNLP
'11, Jul. 2011.

[36] J. Hatori, T. Matsuzaki, Y. Miyao, and J. Tsujii, “Incremental joint
POS tagging and dependency parsing in Chinese,” in Proc. 5th Int.
Joint Conf. Nat. Lang. Process., Chiang Mai, Thailand, Nov. 2011,
pp. 1216–1224 [Online]. Available: http://www.aclweb.org/anthology/
I11-1136, Asian Federation of Natural Language Processing

[37] A. Ratnaparkhi, “A maximum entropy model for part-of-speech tag-
ging,” in Proc. EMNLP '96, 1996, pp. 133–142.

[38] Y. Zhang and S. Clark, “Joint word segmentation and POS tagging
using a single perceptron,” in Proc. ACL-08: HLT, Columbus, OH,
USA, Jun. 2008, pp. 888–896 [Online]. Available: http://www.aclweb.
org/anthology/P/P08/P08-1101

[39] E. Charniak, D. Blaheta, N. Ge, K. Hall, J. Hale, and M. Johnson,
“BLLIP 1987-89 WSJ Corpus Release 1, LDC2000T 43,” Linguistic
Data Consortium, 2000.

[40] C.-R. Huang, “Tagged Chinese gigaword version 2.0, LDC2009T 14,”
Linguistic Data Consortium, 2009.

[41] C. Kruengkrai, K. Uchimoto, J. Kazama, Y.Wang, K. Torisawa, and H.
Isahara, “An error-driven word-character hybrid model for joint Chi-
nese word segmentation and POS tagging,” in Proc. ACL-IJCNLP'09,
Suntec, Singapore, Aug. 2009, pp. 513–521.

[42] J. Nivre, J. Hall, and J. Nilsson, “Memory-based dependency parsing,”
in Proc. CoNLL '04, 2004, pp. 49–56.

[43] J. Suzuki, H. Isozaki, X. Carreras, and M. Collins, “An empirical study
of semi-supervised structured conditional models for dependency
parsing,” in Proc. EMNLP'09, Singapore, Aug. 2009, pp. 551–560.

[44] J. Suzuki andH. Isozaki, “Semi-supervised sequential labeling and seg-
mentation using giga-word scale unlabeled data,” in Proc. ACL-08:
HLT, Columbus, OH, USA, Jun. 2008, pp. 665–673.

[45] W. Chen, J. Kazama, K. Uchimoto, and K. Torisawa, “Improving
dependency parsing with subtrees from auto-parsed data,” in Proc.
EMNLP '09, Singapore, Aug. 2009, pp. 570–579.

460 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 3, MARCH 2015

[46] G. Zhou, J. Zhao, K. Liu, and L. Cai, “Exploiting web-derived selec-
tional preference to improve statistical dependency parsing,” in Proc.
ACL-HLT'11, Portland, OR, USA, Jun. 2011, pp. 1556–1565 [Online].
Available: http://www.aclweb.org/anthology/P11-1156

[47] J. Suzuki, H. Isozaki, andM. Nagata, “Learning condensed feature rep-
resentations from large unsupervised data sets for supervised learning,”
in Proc. ACL'11, Portland, OR, USA, Jun. 2011, pp. 636–641 [Online].
Available: http://www.aclweb.org/anthology/P11-2112

[48] W. Chen, M. Zhang, and Y. Zhang, “Semi-supervised feature
transformation for dependency parsing,” in Proc. EMNLP '13,
Seattle, WA, USA, Oct. 2013, pp. 1303–1313 [Online]. Available:
http://www.aclweb.org/anthology/D13-1129

[49] X. Wu, J. Zhou, Y. Sun, Z. Liu, D. Yu, H. Wu, and H. Wang, “General-
ization of words for Chinese dependency parsing,” in Proc. IWPT '13,
2013, pp. 73–81.

[50] Z. Li, M. Zhang, W. Che, and T. Liu, “A separately passive-aggressive
training algorithm for joint POS tagging and dependency parsing,” in
Proc. 24rd Int. Conf. Comput. Linguist. (Coling '12), Mumbai, India,
2012.

[51] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng, “Parsing with com-
positional vector grammars,” in Proc. ACL '13, 2013, Citeseer.

[52] X. Zheng, H. Chen, and T. Xu, “Deep learning for Chinese word seg-
mentation and POS tagging,” in Proc. EMNLP '13, 2013, pp. 647–657.

[53] O. Levy and Y. Goldberg, “Dependency based word embeddings,” in
Proc. ACL 2014(short), 2014.

[54] R. Ando and T. Zhang, “A high-performance semi-supervised learning
method for text chunking,” ACL, 2005.

Wenliang Chen received his bachelor degree in me-
chanical engineering and Ph.D. degree in computer
science from Northeastern University in 1999 and
2005, respectively. He joined Soochow University in
2013 and is currently a Professor with the university.
Prior to joining Soochow University, he was a
Research Scientist in the Institute for Infocomm
Research of Singapore from 2011 to 2013. From
2005 to 2010, he worked as an expert researcher with
NICT, Japan. His current research interests include
parsing, machine translation, and machine learning.

Min Zhang received his bachelor degree and Ph.D.
degree in computer science from Harbin Institute
of Technology in 1991 and 1997, respectively. He
joined Soochow University in 2013 and is currently
a Distinguished Professor with the university. From
1997 to 1999, he was a Postdoctoral Research Fellow
with the Korean Advanced Institute of Science and
Technology in South Korea. He began his academic
and industrial career as a Researcher at Lernout &
Hauspie Asia Pacific (Singapore) in 1999. He joined
Infotalk Technology (Singapore) as a Researcher

in 2001 and became a Senior Research Manager in 2002. He joined the
Institute for Infocomm Research (Singapore) in 2003. His current research
interests include machine translation, natural language processing, information
extraction, large-scale text processing, intelligent computing, and machine
learning. He has authored 150 papers in leading journals and conferences. He
is the vice president of COLIPS, a steering committee member of PACLIC, an
executive member of AFNLP and a member of ACL.

Yue Zhang currently is an Assistant Professor at
Singapore University of Technology and Design
(SUTD). Before joining SUTD, he was a Post-
doctoral Research Associate at the University of
Cambridge. He received his Ph.D. degree from the
University of Oxford, working on statistical Chinese
processing for his thesis. He received his M.Sc.
degree from the University of Oxford, working
on statistical machine translation from Chinese to
English by parsing, and his undergraduate degree
on computer science from Tsinghua University,

China. His research interest includes machine learning-based natural language
processing, web information extraction and financial market prediction. For
natural language processing, He works on natural language parsing and gener-
ation (in particular for English and Chinese), as well as machine translation.

