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Abstract

Sequential LSTMs have been extended to
model tree structures, giving competitive re-
sults for a number of tasks. Existing methods
model constituent trees by bottom-up com-
binations of constituent nodes, making di-
rect use of input word information only for
leaf nodes. This is different from sequen-
tial LSTMs, which contain references to input
words for each node. In this paper, we propose
a method for automatic head-lexicalization
for tree-structure LSTMs, propagating head
words from leaf nodes to every constituent
node. In addition, enabled by head lexicaliza-
tion, we build a tree LSTM in the top-down
direction, which corresponds to bidirectional
sequential LSTMs in structure. Experiments
show that both extensions give better repre-
sentations of tree structures. Our final model
gives the best results on the Stanford Senti-
ment Treebank and highly competitive results
on the TREC question type classification task.

1 Introduction

Both sequence structured and tree structured neural
models have been applied to NLP problems. Sem-
inal work uses convolutional neural networks (Col-
lobert and Weston, 2008), recurrent neural networks
(Elman, 1990; Mikolov et al., 2010) and recur-
sive neural networks (Socher et al., 2011) for se-
quence and tree modeling. Long short-term mem-
ory (LSTM) networks have significantly improved
accuracies in a variety of sequence tasks (Sutskever
et al., 2014; Bahdanau et al., 2015) compared to

vanilla recurrent neural networks. Addressing di-
minishing gradients effectively, they have been ex-
tended to tree structures, achieving promising re-
sults for tasks such as syntactic language modeling
(Zhang et al., 2016), sentiment analysis (Li et al.,
2015; Zhu et al., 2015; Le and Zuidema, 2015; Tai
et al., 2015; Teng et al., 2016) and relation extraction
(Miwa and Bansal, 2016).

Depending on the node type, typical tree struc-
tures in NLP can be categorized to constituent trees
and dependency trees. A salient difference be-
tween the two types of tree structures is in the
node. While dependency tree nodes are input words
themselves, constituent tree nodes represent syntac-
tic constituents. Only leaf nodes in constituent trees
correspond to words. Though LSTM structures have
been developed for both types of trees above, we in-
vestigate constituent trees in this paper. There are
three existing methods for constituent tree LSTMs
(Zhu et al., 2015; Tai et al., 2015; Le and Zuidema,
2015), which make essentially the same extension
from sequence structured LSTMs. We take the
method of Zhu et al. (2015) as our baseline.

Figure 1 shows the sequence structured LSTM of
Hochreiter and Schmidhuber (1997) and the tree-
structured LSTM of Zhu et al. (2015), illustrating
the input (x), cell (c) and hidden (h) nodes at a cer-
tain time step t. The most important difference be-
tween Figure 1(a) and Figure 1(b) is the branching
factor. While a cell in the sequence structure LSTM
depends on the single previous hidden node, a cell in
the tree-structured LSTM depends on a left hidden
node and a right hidden node. Such tree-structured
extensions of the sequence structured LSTM assume
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Figure 1: Topology of sequential and tree LSTMs.
(a) nodes in sequential LSTM; (b) non-leaf nodes
in tree LSTM; (c) leaf nodes in tree LSTM. Shaded
nodes represent lexical input vectors. White nodes
represent hidden state vectors.

that the constituent tree is binarized, building hidden
nodes from the input words in the bottom-up direc-
tion. The leaf node structure is shown in Figure 1(c).

A second salient difference between the two types
of LSTMs is the modeling of input words. While
each cell in the sequence structure LSTM directly
depends on its corresponding input word (Figure
1(a)), only leaf cells in the tree structure LSTM di-
rectly depend on corresponding input words (Figure
1(c)). This corresponds well to the constituent tree
structure, where there is no direct association be-
tween non-leaf constituent nodes and input words.
However, it leaves the tree structure a degraded
version of a perfect binary-branching variation of
the sequence-structure LSTM, with one important
source of information (i.e. words) missing in form-
ing a cell (Figure 1(b)).

We fill this gap by proposing an extension to the
tree LSTM model, injecting lexical information into
every node in the tree. Our method takes inspiration
from work on head-lexicalization, which shows that
each node in a constituent tree structure is governed
by a head word. As shown in Figure 2, the head
word for the verb phrase “visited Mary” is “visited”,
and the head word of the adverb phrase “this after-
noon” is “afternoon”. Research has shown that head
word information can significantly improve the per-
formance of syntactic parsing (Collins, 2003; Clark
and Curran, 2004). Correspondingly, we use the
head lexical information of each constituent word as
the input node x for calculating the corresponding
cell c in Figure 1(b).

Figure 2: Head-Lexicalized Constituent Tree.

Traditional head-lexicalization relies on specific
rules (Collins, 2003; Zhang and Clark, 2009), typ-
ically extracting heads from constituent treebanks
according to certain grammar formalisms. For bet-
ter generalization, we use a neural attention mech-
anism to derive head lexical information automati-
cally, rather than relying on linguistic head rules to
find the head lexicon of each constituent, which is
language- and formalism-dependent.

Based on such head lexicalization, we further
make a bidirectional extension of the tree structured
LSTM, propagating information in the top-down di-
rection as well as the bottom-up direction. This is
analogous to the bidirectional extension of sequence
structured LSTMs, which are commonly used for
NLP tasks such as speech recognition (Graves et
al., 2013), sentiment analysis (Tai et al., 2015; Li
et al., 2015) and machine translation (Sutskever et
al., 2014; Bahdanau et al., 2015) tasks.

Results on a standard sentiment classification
benchmark and a question type classification bench-
mark show that our tree LSTM structure gives
significantly better accuracies compared with the
method of Zhu et al. (2015). We achieve the best
reported results for sentiment classification. Inter-
estingly, the head lexical information that is learned
automatically from the sentiment treebank consists
of both syntactic head information and key sen-
timent word information. This shows the advan-
tage of automatic head-finding as compared with
rule-based head lexicalization. We make our code
available under GPL at https://github.com/
zeeeyang/lexicalized_bitreelstm.

2 Related Work

LSTM Recurrent neural network (RNN) (Elman,
1990; Mikolov et al., 2010) achieves success on
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modeling linear structures due to its ability to pre-
serve history over arbitrary length sequences. At
each step, RNN decides its hidden state based on
both the current input and the previous hidden state.
In theory, it can carry over unbounded history.
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is a special type of RNN that
leverages multiple gate vectors and a memory cell
vector to solve the vanishing and exploding gradi-
ent problems of training RNNs. It has been success-
fully applied to parsing (Vinyals et al., 2015a), senti-
ment classification (Tai et al., 2015; Li et al., 2015),
speech recognition (Graves et al., 2013), machine
translation (Sutskever et al., 2014; Bahdanau et al.,
2015) and image captioning (Vinyals et al., 2015b).
There are many variants of sequential LSTMs, such
as simple Gated Recurrent Neural Networks (Cho et
al., 2014). Greff et al. (2017) compared various ar-
chitectures of LSTM. In this paper, we take the stan-
dard LSTM with peephole connections (Gers and
Schmidhuber, 2000) as a baseline.

Structured LSTM There has been a line of re-
search that extends the standard sequential LSTM in
order to model more complex structures. Kalchbren-
ner et al. (2016) proposed Grid LSTMs to process
multi-dimensional data. Theis and Bethge (2015)
proposed Spatial LSTMs to handle image data. Dyer
et al. (2015) designed Stack LSTMs by adding a top
pointer to sequential LSTMs to deal with push and
pop sequences of a stack. Tai et al. (2015), Zhu
et al. (2015) and Le and Zuidema (2015) extended
sequential LSTMs to Tree-Structured LSTMs (Tree
LSTMs) by adding branching factors. Experi-
ments demonstrated that Tree LSTMs can outper-
form competitive LSTM baselines on several tasks,
such as semantic relatedness prediction and senti-
ment classification. Li et al. (2015) further inves-
tigated the effectiveness of Tree LSTMs on various
tasks and discussed when Tree LSTMs are neces-
sary. In addition, Li et al. (2016) employed graph
gated units to model graph-based structures.

Tree LSTM The idea of extending linear recur-
rent structures to tree recurrent structures is remi-
niscent of extending Recurrent Neural Network to
Recursive Neural Network (ReNN) (Socher et al.,
2013b; Le and Zuidema, 2014) to support informa-
tion flow over trees. In addition to Tai et al. (2015),
Zhu et al. (2015) and Le and Zuidema (2015), who

explicitly named their models as Tree LSTMs, Cho
et al. (2014) designed gated recurrent units over tree
structures, and Chen et al. (2015) introduced gate
mechanisms to recursive neural networks. These can
also be regarded as variants of Tree LSTMs.

Both Zhu et al. (2015) and Le and Zuidema
(2015) proposed Binary Tree LSTM models, which
can be applied to situations where there are ex-
actly two children of each internal node in a tree.
The difference between Zhu et al. (2015) and Le
and Zuidema (2015) is that besides using two for-
get gates, Le and Zuidema (2015) also make use of
two input gates to let a node know its sibling. Tai et
al. (2015) introduced Child-Sum Tree LSTM and N-
ary Tree LSTM. Child-Sum Tree LSTMs can support
multiple children, while N-ary Tree LSTMs work
for trees with a branching factor of at most N . In
this perspective, Binary Tree LSTM is a special case
of N-ary Tree LSTM with N = 2.

When a Child-Sum Tree LSTM is applied to a de-
pendency tree, it is referred to as a Dependency Tree
LSTM. A Binary Tree LSTM is also referred to as a
Constituent Tree LSTM. Based on Tai et al. (2015),
Miwa and Bansal (2016) introduced a Tree LSTM
model that can handle different types of children. A
dependency tree naturally contains lexical informa-
tion at every node, while only leaf nodes contain lex-
ical information in a constituent tree. None of these
methods (Tai et al., 2015; Zhu et al., 2015; Le and
Zuidema, 2015) make direct use of lexical input for
internal nodes when using constituent Tree LSTMs.

Bi-LSTM Another common extension to sequen-
tial LSTM is to include bidirectional information
(Graves et al., 2013), which can model history both
left-to-right and right-to-left. The aforementioned
Tree LSTM models (Tai et al., 2015; Zhu et al.,
2015; Le and Zuidema, 2015) propagate the history
of children to their parent in the bottom-up direction
only, while ignoring the top-down information flow
from parents to children. Zhang et al. (2016) pro-
posed a top-down Tree LSTM to estimate the gen-
eration probability of a dependency tree. However,
no corresponding bottom-up Tree LSTM is incorpo-
rated into their model.

Paulus et al. (2014) leveraged bidirectional infor-
mation over recursive binary trees by propagating
global belief down from the tree root to leaf nodes.
However, their model is based on recursive neural
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network rather than LSTM. Miwa and Bansal (2016)
adopted a bidirectional Tree LSTM model to jointly
extract named entities and relations under a depen-
dency tree structure. For constituent tree structures,
however, their model does not work due to lack of
word inputs on non-leaf constituent nodes, and in
particular the root node. Our head lexicalization al-
lows us to investigate the top-down constituent Tree
LSTM. To our knowledge, we are the first to report
a bidirectional constituent Tree LSTM.

3 Baselines

A sequence-structure LSTM estimates a sequence of
hidden state vectors given a sequence of input vec-
tors, through the calculation of a sequence of hid-
den cell vectors using a gate mechanism. For NLP,
the input vectors are typically word embeddings
(Mikolov et al., 2013), but can also include part-
of-speech (POS) embeddings, character embeddings
or other types of information. For notational conve-
nience, we refer to the input vectors as lexical vec-
tors.

Formally, given an input vector sequence
x1, x2, . . . , xn, each state vector ht is estimated
from the Hadamard product of a cell vector ct and
a corresponding output gate vector ot

ht = ot ⊗ tanh(ct) (1)

Here the cell vector depends on both the previous
cell vector ct, and a combination of the previous
state vector ht−1; the current input vector xt:

ct = ft ⊗ ct−1 + it ⊗ gt
gt = tanh(Wxgxt +Whght−1 + bg)

(2)

The combination of ct−1 and gt is controlled by
the Hadamard product between a forget gate vector
ft and an input gate vector it, respectively. The
gates ot, ft and it are defined as follows

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo),

(3)

where σ is the sigmoid function. Wxg, Whg, bg,
Wxi, Whi, Wci, bi, Wxf , Whf , Wcf , bf , Wxo, Who,
Wco and bo are model parameters.

The bottom-up Tree LSTM of Zhu et al. (2015)
extends the left-to-right sequence LSTM by splitting

the previous state vector ht−1 into a left child state
vector hLt−1 and a right child state vector hRt−1, and
the previous cell vector ct−1 into a left child cell vec-
tor cLt−1 and a right child cell vector cRt−1, calculating
ct as

ct = fLt ⊗ cLt−1 + fRt ⊗ cRt−1 + it ⊗ gt, (4)

and the input/output gates it/ot as

it = σ
( ∑

N∈{L,R}
(WN

hih
N
t−1 +WN

ci c
N
t−1) + bi

)

ot = σ
( ∑

N∈{L,R}
WN

hoh
N
t−1 +Wcoct + bo

) (5)

The forget gate ft is split into fLt and fRt for regu-
lating cLt−1 and cRt−1, respectively:

fLt = σ
( ∑

N∈{L,R}
(WN

hfl
hNt−1 +WN

cfl
cNt−1) + bfl

)

fRt = σ
( ∑

N∈{L,R}
(WN

hfrh
N
t−1 +WN

cfrc
N
t−1) + bfr

)

(6)

gt depends on both hLt−1 and hRt−1, but as shown in
Figure 1 (b), it does not depend on xt

gt = tanh
( ∑

N∈{L,R}
WN

hgh
N
t−1 + bg

)
(7)

Finally, the hidden state vector ht is calculated
in the same way as in the sequential LSTM model
shown in Equation 1. WL

hi, W
R
hi, W

L
ci , W

R
ci , bi, WL

ho,
WR

ho, Wco, bo, WL
hfl

, WR
hfl

, WL
cfl

, WR
cfl

, bfl , W
L
hfr

,
WR

hfr
, WL

cfr
, WR

cfr
, bfr , WL

hg, WR
hg and bg are model

parameters.

4 Our Model

4.1 Head Lexicalization
We introduce an input lexical vector xt to the cal-
culation of each cell vector ct via a bottom-up head
propagation mechanism. As shown in the shaded
nodes in Figure 3 (b), the head propagation mecha-
nism is parallel to the cell propagation mechanism.
In contrast, the method of Zhu et al. (2015) in Figure
3 (a) does not have the input vector xt for non-leaf
constituents.

There are multiple ways to choose a head lexi-
con for a given binary-branching constituent. One
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(a) (b)

Figure 3: Contrast between Zhu et al. (2015) (a) and
this paper (b). Shaded nodes represent lexical input
vectors. White nodes represent hidden state vectors.

simple method is to choose the head lexicon of the
left child as the head (left-headedness). Correspond-
ingly, an alternative is to use the right child for
head lexicon. There is less consistency in the gov-
erning head lexicons across variations of the same
type of constituents with slightly different typolo-
gies. Hence, simple baselines can be less effective
compared to linguistically motivated head findings.

Rather than selecting head lexicons using
manually-defined head-finding rules, which are
language- and formalism-dependent (Collins, 2003),
we cast head finding as a part of the neural network
model, learning the head lexicon of each constituent
by a gated combination of the head lexicons of its
two children1. Formally,

xt = zt ⊗ xLt−1 + (1− zt)⊗ xRt−1, (8)

where xt represents the head lexicon vector of the
current constituent, xLt−1 represents the head lexicon
of its left child constituent, and xRt−1 represents the
head lexicon of its right child constituent. The gate
zt is calculated based on xLt−1 and xRt−1,

zt = σ(WL
zxx

L
t−1 +WR

zxx
R
t−1 + bz) (9)

Here WL
zx, WR

zx and bz are model parameters.

4.2 Lexicalized Tree LSTM
Given head lexicon vectors for nodes, the Tree
LSTM of Zhu et al. (2015) can be extended by lever-
aging xt in calculating the corresponding ct. In par-
ticular, xt is used to estimate the input (it), output

1In this paper, we work on binary trees only, which is a com-
mon form for CKY and shift-reduce parsing. Typical binariza-
tion methods, such as head binarization (Klein and Manning,
2003) , also rely on specific head-finding rules.

(ot) and forget (fRt and fLt ) gates:

it = σ
(
Wxixt+

∑

N∈{L,R}
(WN

hih
N
t−1 +WN

ci c
N
t−1) + bi

)

fLt = σ
(
Wxfxt+

∑

N∈{L,R}
(WN

hfl
hNt−1 +WN

cfl
cNt−1) + bfl

)

fRt = σ
(
Wxfxt+

∑

N∈{L,R}
(WN

hfrh
N
t−1 +WN

cfrc
N
t−1) + bfr

)

ot = σ
(
Wxoxt+

∑

N∈{L,R}
WN

hoh
N
t−1 +Wcoct + bo

)

(10)

In addition, xt is also used in computing gt,

gt = tanh
(
Wxgxt +

∑

N∈{L,R}
WN

hgh
N
t−1 + bg

)
(11)

With the new definition of it, fRt , fLt and gt, the
computing of ct remains the same as the baseline
Tree LSTM model as shown in Equation 4. Simi-
larly, ht remains the Hadamard product of ct and the
new ot as shown in Equation 1.

In this model, Wxi, Wxf , Wxg and Wxo are
newly-introduced model parameters. The use of xt
in computing the gate and cell values are consistent
with those in the baseline sequential LSTM.

4.3 Bidirectional Extensions
Given a sequence of input vectors [x1, x2, . . . , xn], a
bidirectional sequential LSTM (Graves et al., 2013)
computes two sets of hidden state vectors, [h̃1, h̃2,
. . . , h̃n] and [h̃′n, h̃′n−1, . . . , h̃′1] in the left-to-right
and the right-to-left directions, respectively. The fi-
nal hidden state hi of the input xi is the concate-
nation of the corresponding state vectors in the two
LSTMs,

hi = h̃i ⊕ h̃′n−i+1 (12)

The two LSTMs can share the same model parame-
ters or use different parameters. We choose the latter
in our baseline experiments.

We make a bidirectional extension to the Lexical-
ized Tree LSTM in Section 4.2 by following the se-
quential LSTMs in Section 3, adding an additional
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Figure 4: Top-down tree LSTM.

set of hidden state vectors in the top-down direction.
Different from the bottom-up direction, each hidden
state in the top-down LSTM has exactly one prede-
cessor. In fact, the path from the root of a tree down
to any node forms a sequential LSTM.

Note, however, that two different sets of model
parameters are used when the current node is the left
and the right child of its predecessor. Denoting the
two sets of parameters as UL and UR, respectively,
the hidden state vector h7 in Figure 4 is calculated
from the hidden state vector h1 using the parameter
set sequence [UL,UL,UR]. Similarly, h8 is calcu-
lated from h1 using [UL,UR,UL]. At each step t,
the computing of ht follows the sequential LSTM
model:

ht = ot ⊗ tanh(ct−1)

ct = ft ⊗ ct−1 + it ⊗ gt
gt = tanh(WN

xg↓xt−1 +WN
hg↓ht−1 + bNg↓)

(13)

With the gate values being defined as:

it = σ(WN
xi↓xt +WN

hi↓ht−1 +WN
ci↓ct−1 + bNi↓)

ft = σ(WN
xf↓xt +WN

hf↓ht−1 +WN
cf↓ct−1 + bNf↓)

ot = σ(WN
xo↓xt +WN

ho↓ht−1 +WN
co↓ct + bNo↓)

(14)

Here N ∈ {L,R} and UN = {WN
xg↓,W

N
hg↓,

bNg↓,W
N
xi↓,W

N
hi↓,W

N
ci↓, b

N
i↓ ,W

N
xf↓,W

N
hf↓,W

N
cf↓, b

N
f↓,

WN
xo↓,W

N
ho↓,W

N
co↓, b

N
o↓}. UL and UR are model pa-

rameters in the top-down Tree LSTM.
One final note is that the top-down Tree LSTM is

enabled by the head propagation mechanism, which
allows a head lexicon node to be made available for
the root constituent node. Without such information,
it would be difficult to build top-down LSTM for
constituent trees.

5 Usage for Classification

We apply the bidirectional Tree LSTM to classifi-
cation tasks, where the input is a sentence with its
binarized constituent tree, and the output is a dis-
crete label. We denote the bottom-up hidden state
vector of the root as h̃ROOT↑, the top-down hidden
state vector of the root as h̃ROOT↓ and the top-down
hidden state vectors of the input words x1, x2, . . . ,
xn as h̃′1, h̃′2, . . . , h̃′n. We take the concatenation of
h̃ROOT↑, h̃ROOT↓ and the average of h̃′1, h̃′2, . . . , h̃′n
as the final representation h of the sentence:

h = h̃ROOT↑ ⊕ h̃ROOT↓ ⊕
1

n

n∑

i=1

h̃′i (15)

A softmax classifier is used to predict the probability
pj of sentiment label j from h by

hl = ReLU(Whlh+ bhl)

P = softmax(Wlphl + blp)

pj = P [j],

(16)

where Whl, bhl, Wlp and blp are model parame-
ters, and ReLU is the rectifier function f(x) =
max(0, x). During prediction, the largest probabil-
ity component of P will be taken as the answer.

6 Training

We train our classifier to maximize the conditional
log-likelihood of gold labels of training samples.
Formally, given a training set of size |D|, the train-
ing objective is defined by

L(Θ) = −
|D|∑

i=1

log pyi +
λ

2
||Θ||2, (17)

where Θ is the set of model parameters, λ is a reg-
ularization parameter, yi is the gold label of the i-
th training sample and pyi is obtained according to
Equation 16. For sequential LSTM models, we col-
lect errors over each sequence. For Tree LSTMs, we
sum up errors at every node.

The model parameters are optimized using
ADAM (Kingma and Ba, 2015) without gradient
clipping, with the default hyper-parameters of the
AdamTrainer in the Dynet toolkits.2 We also use
dropout (Srivastava et al., 2014) at lexical input

2https://github.com/clab/dynet
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embeddings with a fixed probability pdrop to avoid
overfitting. pdrop is set to 0.5 for all tasks.

Following Tai et al. (2015), Li et al. (2015), Zhu
et al. (2015) and Le and Zuidema (2015), we use
Glove-300d word embeddings3 to train our model.
The pretrained word embeddings are fine-tuned for
all tasks. Unknown words are handled in two steps.
First, if a word is not contained in the pretrained
word embeddings, but its lowercased form exists in
the embedding table, we use the lowercase as a re-
placement. Second, if both the original word and its
lowercased form cannot be found, we treat the word
as unk. The embedding vector of the UNK token is
initialized as the average of all embedding vectors.

We use one hidden layer and the same dimension-
ality settings for both sequential and Tree LSTMs.
LSTM hidden states are of size 150. The output hid-
den size is 128 and 64 for the sentiment classifica-
tion task and the question type classification task,
respectively. Each model is trained for 30 iterations.
The same training procedure repeats five times using
different random seeds, with parameters being eval-
uated at the end of every iteration on the develop-
ment set. The model that gives the best development
result is used for final tests.

7 Experiments

The effectiveness of our model is tested mainly on
a sentiment classification task and a question type
classification task.

7.1 Tasks

Sentiment Classification. For sentiment classifi-
cation, we use the same data settings as Zhu et al.
(2015). Specifically, we use the Stanford Sentiment
Treebank (Socher et al., 2013b). Each sentence is
annotated with a constituent tree. Every internal
node corresponds to a phrase. Each node is manu-
ally assigned an integer sentiment label from 0 to 4,
that correspond to five sentiment classes: very neg-
ative, negative, neutral, positive and very positive,
respectively. The root label represents the sentiment
label of the whole sentence.

We perform both binary classification and fine-
grained classification. Following previous work, we
use labels of all phrases for training. Gold-standard

3http://nlp.stanford.edu/data/glove.840B.300d.zip

tree structures are used for training and testing (Le
and Zuidema, 2015; Li et al., 2015; Zhu et al., 2015;
Tai et al., 2015). Accuracies are evaluated for both
the sentence root labels and phrase labels.

Question Type Classification. For the ques-
tion type classification task, we use the TREC data
(Li and Roth, 2002). Each training sample in this
dataset contains a question sentence and its cor-
responding question type. We work on the six-
way coarse classification task, where the six ques-
tion types are ENTY, HUM, LOC, DESC, NUM and
ABBR, corresponding to ENTITY, HUMAN, LOCA-
TION, DESCRIPTION, NUMERIC VALUE and AB-
BREVIATION, respectively. For example, the type
for the sentence “What year did the Titanic sink?” is
NUM. The training set consists of 5,452 examples
and the test set contains 500 examples. Since there
is no development set, we follow Zhou et al. (2015),
randomly extracting 500 examples from the training
set as a development set. Unlike the sentiment tree-
bank, there is no annotated tree for each sentence.
Instead, we obtain an automatically parsed tree for
each sentence using ZPar4 off-the-shelf (Zhang and
Clark, 2011). Another difference between the TREC
data and the sentiment treebank is that there is only
one label, at the root node, rather than a label for
each phrase.

7.2 Baselines

We consider two models for our baselines. The first
is bidirectional LSTM (BiLSTM) (Hochreiter and
Schmidhuber, 1997; Graves et al., 2013). Our bidi-
rectional constituency Tree LSTM (BiConTree) is
compared against BiLSTM to investigate the effec-
tiveness of tree structures. For the sentiment task,
following Tai et al. (2015) and Li et al. (2015), we
convert the treebank into sequences to allow the
bidirectional LSTM model to make use of every
phrase span as a training example. The second base-
line model is the bottom-up Tree LSTM model of
Zhu et al. (2015). We compare this model with our
lexicalized bidirectional models to show the effects
of adding head lexicalization and top-down informa-
tion flow.

4https://github.com/SUTDNLP/ZPar, version 7.5
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Model 5-class binary
Root Phrase Root Phrase

RNTN(Socher et al., 2013b) 45.7 80.7 85.4 87.6
BiLSTM(Li et al., 2015) 49.8 83.3 86.7 -
DepTree(Tai et al., 2015) 48.4 - 85.7 -
ConTree(Le and Zuidema, 2015) 49.9 - 88.0 -
ConTree(Zhu et al., 2015) 50.1 - - -
ConTree(Li et al., 2015) 50.4 83.4 86.7 -
ConTree(Tai et al., 2015) 51.0 - 88.0 -
BiLSTM (Our implementation) 49.9 82.7 87.6 91.8
ConTree (Our implementation) 51.2 83.0 88.5 92.5
Top-down ConTree 51.0 82.9 87.8 92.1
ConTree + Lex 52.8 83.2 89.2 92.3
BiConTree 53.5 83.5 90.3 92.8

Table 1: Test set accuracies for sentiment classifica-
tion tasks.

7.3 Main Results

Table 1 shows the main results for the sentiment
classification task, where RNTN is the recursive
neural tensor model of Socher et al. (2013b), Con-
Tree and DepTree denote constituency Tree LSTMs
and dependency Tree LSTMs, respectively. Our re-
implementations of sequential bidirectional LSTM
and constituent Tree LSTM (Zhu et al., 2015) give
comparable results to the original implementations.

After incorporating head lexicalization into our
constituent Tree LSTM, the fine-grained sentiment
classification accuracy increases from 51.2 to 52.8,
and the binary sentiment classification accuracy in-
creases from 88.5 to 89.2, which demonstrates the
effectiveness of the head lexicalization mechanism.

Table 1 also shows that a vanilla top-down Con-
Tree LSTM by head-lexicalization (i.e. the top-
down half of the final bidirectional model) alone ob-
tains comparable accuracies to the bottom-up Con-
Tree LSTM model. The BiConTree model can
further improve the classification accuracies by 0.7
points (fine-grained) and 1.3 points (binary) com-
pared to the unidirectional bottom-up lexicalized
ConTree LSTM model, respectively.

Table 1 includes 5 class accuracies for all nodes.
There is no significant difference between different
models, consistent with the observation of Li et al.
(2015). To our knowledge, these are the best re-
ported results for this sentiment classification task.

Table 2 shows the question type classification re-
sults. Our final model gives better results compared

Model Accuracy
Baseline BiLSTM 93.8
Baseline BottomUp ConTree LSTM 93.4
SVM (Silva et al., 2011) 95.0
Bidirectional ConTree LSTM 94.8

Table 2: TREC question type classification results.

Model ConTree ConTree+Lex BiConTree
Time (s) 4,664 7,157 11,434

Table 3: Averaged training time over 30 iterations.

to the BiLSTM model and the bottom-up ConTree
model, achieving comparable results to the state-of-
the-art SVM classifier with carefully designed fea-
tures.

7.4 Training Time and Model Size

Introducing head lexicalization and bidirectional ex-
tension to the model increases the model complex-
ity. In this section, we analyze training time and
model size with the fine-grained sentiment classifi-
cation task.

We run all the models using an i7-4790 3.60GHz
CPU with a single thread. Table 3 shows the av-
erage running time for different models over 30 it-
erations. The baseline ConTree model takes about
1.3 hours to finish the training procedure. Con-
Tree+Lex takes about 1.5 times longer than Con-
Tree. BiConTree takes about 3.2 hours, which is
about 2.5 times longer than that of ConTree.

Table 4 compares the model sizes. We did not
count the number of parameters in the lookup ta-
ble since these parameters are the same for all mod-
els. Because the size of LSTM models mainly de-
pends on the dimensionality of the state vector h,
we change the size of h to study the effect of model
size. When |h| = 150, the model size of the base-
line model ConTree is the smallest, which consists
of about 538K parameters. The model size of Con-
Tree+Lex is about 1.4 times as large as that of the
baseline model. The bidirectional model BiCon-
Tree is the largest, about 1.7 times as large as that of
the ConTree+Lex model. However, this parameter
set is not very large compared to the modern mem-
ory capacity, even for a computer with 16GB RAM.
In conclusion, in terms of both time, number of pa-
rameters and accuracy, head lexicalization method is
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Model |h| #Parameter Accuracy (%)
ConTree 150 538,223 51.2
ConTree+Lex 75 376,673 51.5
ConTree+Lex 150 763,523 52.8
ConTree+Lex 215 1,253,493 52.5
ConTree+Lex 300 2,110,973 51.8
BiConTree 75 564,923 52.6
BiConTree 150 1,297,523 53.5

Table 4: Effect of model size.

a good choice.
Table 4 also helps to clarify whether the gain

of the BiConTree model over the ConTree+Lex
model is from the top-down information flow or
more parameters. For the same model, increas-
ing the model size can improve the performance
to some extent. For example, doubling the size of
|h| (75 → 150) increases the performance from
51.5 to 52.8 for the ConTree+Lex model. Simi-
larly, we boost the performance of the BiConTree
model when doubling the size of |h| from 75 to 150.
However, doubling the size of |h| from 150 to 300
empirically decreases the performance of the Con-
Tree+Lex model. The size of the BiConTree model
with |h| = 75 is much smaller than that of the Con-
Tree+Lex model with |h| = 150. However the per-
formance of these two models is quite close, which
indicates that top-down information is useful even
for a small model. A ConTree+Lex model with
|h| = 215 and a BiConTree model with |h| = 150
are of similar size. The performance of the Con-
Tree+Lex model is again worse than that of the Bi-
ConTree model (52.5 v.s. 53.5), which shows the
effectiveness of top-down information.

7.5 Head Lexicalization Methods

In this experiment, we investigate the effect of our
head lexicalization method over heuristic baselines.
We consider three baseline methods, namely left
branching (L), right branching (R) and averaging
(A). For L, a parent node accepts lexical informa-
tion of its left child while ignoring the right child.
Correspondingly, for R, a parent node accepts lexi-
cal information of its right child while ignoring the
left child. For A, a parent node takes the average of
the lexical vectors of its children.

Table 5 shows the accuracies on the test set, where
G denotes our gated head lexicalization method de-

Method L R A G
Root Accuracy (%) 51.1 51.6 51.8 53.5

Table 5: Test set accuracies of four head lexicaliza-
tion methods on fine-grained classification.

scribed in Section 4.1. R gives better results com-
pared to L due to relatively more right-branching
structures in this treebank. A simple average yields
similar results compared with right branching. In
contrast, G outperforms A method by considering
the relative weights of each branch according to tree-
level contexts.

We then investigate what lexical heads can be
learned by G. Interestingly, the lexical heads con-
tain both syntactic and sentiment information. Some
heads correspond well to syntactic rules (Collins,
2003), others are driven by subjective words. Com-
pared to Collins’ rules, our method found 30.68%
and 25.72% overlapping heads on the development
and test sets, respectively.

Based on the cosine similarity between the head
lexical vector and its children, we visualize the head
of a node by choosing the head of the child that gives
the largest similarity value. Figure 5 shows some
examples, where <> indicates head words, senti-
ment labels (e.g. 2, 3) are also included. In Fig-
ure 5a, “Emerges” is the syntactic head word of the
whole phrase, which is consistent with Collins-style
head finding. However, “rare” is the head word of
the phrase “something rare”, which is different from
the syntactic head. Similar observations are found
in Figure 5b, where “good” is the head word of the
whole phrase, rather than the syntactic head “place”.
The sentiment label of “good” and the sentiment la-
bel of the whole phrase are both 3. Figure 5c shows
more complex interactions between syntax and sen-
timent for deciding the head word.

7.6 Error Analysis
Table 6 shows some example sentences incorrectly
predicted by the baseline bottom-up tree model, but
correctly labeled by our final model. The head word
of sentence #1 by our model is “Gloriously”, which
is consistent with the sentiment of the whole sen-
tence. This shows how head lexicalization can af-
fect sentiment classification results. Sentences #2
and #3 show the usefulness of top-down informa-
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(a) “Emerges
as something
rare”.

(b) “is a good place to
start”.

(c) “the road to hell is paved with good intentions”.

Figure 5: Visualizing head words found automati-
cally by our model.

ID sentence baseline our model

1
Gloriously goofy ( and
gory ) midnight movie stuff . negative positive

2
The film is really not
so much bad as bland . positive negative

3

This is a good movie
in spurts , but when
it does n’t work ,
it ’s at important times .

positive neutral

Table 6: Example output sentences.

tion for complex semantic structures, where compo-
sitionality has subtle effects. Our final model im-
proves the results for the ‘very negative’ and ‘very
positive’ classes by 10% and 11%, respectively. It
also boosts the accuracies for sentences with nega-
tion (e.g. “not”, “no”, and “none”) by 4.4%.

Figure 6 shows the accuracy distribution accord-

Figure 6: Distribution of 5-class accuracies at the
root level according to the sentence length.

ing to the sentence length. We find that our model
can improve the classification accuracy for longer
sentences (>30 words) by 3.5 absolute points com-
pared to the baseline ConTree LSTM of Zhu et
al. (2015), which demonstrates the strength of our
model for handling long range information. By con-
sidering bidirectional information over tree struc-
tures, our model is aware of more contexts for mak-
ing better predictions.

8 Applications

Our main results are obtained on semantic-
driven sentence classification tasks, where the
automatically-learned head words contain mixed
syntactic and semantic information. To further in-
vestigate the effectiveness of automatically learned
head information on a pure syntactic task, we ad-
ditionally conduct a simple parser reranking experi-
ment. Further, we discuss findings in language mod-
eling by Kuncoro et al. (2017) on the model of recur-
rent neural network grammars (Dyer et al., 2016).
Finally, we show potential future work leveraging
our idea for more tasks.

8.1 Syntactic Parsing
We use our tree LSTM models to rerank the 10 best
outputs of the Charniak (2000) parser. Given a sen-
tence x, suppose that Y (x) is a set of parse tree
candidates generated by a baseline parser for x, the
goal of a syntactic reranker is to choose the best
parsing hypothesis ŷ according to a score function
f(x, y; Θ). Formally,

ŷ = arg maxy∈Y (x){f(x, y; Θ)} (18)
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For each tree y of sentence x, we follow Socher et al.
(2013a) and define the score f(x, y; Θ) as the sum
of scores of each constituent node,

f(x, y; Θ) =
∑

r∈node(x,y)

Score(r; Θ) (19)

Without loss of generality, we take a binary node as
an example. Given a node A, suppose that its two
children are B and C. Let the learned composition
state vectors of A, B and C by our proposed Tree-
LSTM model be nA, nB and nC , respectively. The
head word vector of node A is hA. Score(A; Θ) is
defined as:

oBC
A = ReLU(WL

s nB +WR
s nC +WH

s hA + bs)

ScoreBC
A = log(softmax(oBC

A ))[A],
(20)

where WL
s , WR

s and bs are model parameters.
Training. Given a training instance 〈xi, Y (xi)〉 in

the training set D, we use a max-margin loss func-
tion to train our reranking model. Suppose that the
oracle parse tree in Y (xi) is yi, the loss function
L(Θ) is

L(Θ) =
1

|D|

|D|∑

i=1

ri(Θ) +
λ

2
||Θ||2 (21)

Here λ is a regularization parameter and ri(Θ) is the
margin loss between yi and the highest score tree ŷi
predicted by the reranking model. ri(Θ) is given by

ri(Θ) = max
ŷi∈Y (xi)

(0, f(xi, ŷi; Θ)+

∆(yi, ŷi)− f(xi, yi; Θ)),
(22)

where ∆(yi, ŷi) is the structure loss between yi and
ŷi by counting the number of incorrect nodes in the
oracle tree:

∆(yi, ŷi) =
∑

node∈ŷi

κ1{node /∈ yi}. (23)

κ is a scalar. With this loss function, we require
the score of the oracle tree to be higher than the other
candidates by a score margin. Intuitively, the score
of the yi will increase and the score of ŷi will de-
crease during training.

Results. We experiment on the WSJ portion
of the Penn Treebank, following the standard split
(Collins, 2003). Sections 2-21 are used for train-
ing, Section 24 and Section 23 are the development

set and test set, respectively. The Charniak parser
(Charniak, 2000; Charniak and Johnson, 2005) is
adopted for our baseline by following the settings
of Choe and Charniak (2016).

To obtain N-best lists on the development set and
test set, we first train a baseline parser on the train-
ing set. To obtain N-best lists on the training data,
we split the training data into 20 folds and trained
20 parsers. Each parser was trained on 19 folds data
and used to produce the n-best list of the remain-
ing fold. For the neural reranking model, we use the
pretrained word vectors from Collobert et al. (2011).
The input dimension is 50. The dimension of state
vectors in Tree-LSTM model is 60. These parame-
ters are trained with ADAM (Kingma and Ba, 2015)
with a batch size of 20. We set κ = 0.1 for all ex-
periments. For practical reasons, we use the Con-
Tree+Lex model to learn the node representations
and define Y (xi) to be the 10-best parsing trees of
xi.

Table 7 shows the reranking results on WSJ test
set. The baseline F1 score is 89.7. Our ConTree
improves the baseline model to 90.6. Using Con-
Tree+Lex model can further improve the perfor-
mance (90.6 → 90.9). This suggests that automatic
heads can also be useful for a syntactic task. Among
neural rerankers, our model outperforms Socher et
al. (2013a), but underperforms current state-of-the-
art models, including sequence-to-sequence based
LSTM language models (Vinyals et al., 2015a; Choe
and Charniak, 2016) and recurrent neural network
grammars (Dyer et al., 2016). This is likely due to
our simple reranking configurations and settings5.
Nevertheless, it serves our goal of contrasting the
tree LSTM models.

8.2 Language Modeling
Kuncoro et al. (2017) investigate composition func-
tions in recurrent neural network grammars (RNNG)
(Dyer et al., 2016), finding that syntactic head infor-
mation can be automatically learned. Their observa-

5Dyer et al. (2016) employs 2-layerd LSTMs with input and
hidden dimensions of size 256 and 128. Choe and Charniak
(2016) use 3-layered LSTMs with both the input and hidden di-
mensions of size 1500. In addition, we only use the tree LSTM
for scoring candidate parses in order to isolate the effect of tree
LSTMs. In contrast, the previous works use the complex fea-
ture combinations in order to achieve high accuracies, which is
different from our goal.
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Model F1

Baseline (Charniak (2000)) 89.7
ConTree 90.6
ConTree+Lex 90.9
Our 10-best Oracle 94.8

Table 7: Reranking results on WSJ test set.

tion is consistent with ours. Formally, an RNNG is
a tuple 〈N,Σ, R, S,Θ〉, where N is the set of non-
terminals, Σ is the set of terminals, R is a set of
top-down transition-based rules, S is the start sym-
bol and Θ is the set of model parameters. Given
S, the derivation process resembles transition-based
parsing, which is performed incrementally from left
to right. Unlike surface language models, RNNGs
model sentences with explicit grammar. Compar-
ing naive sequence-to-sequence models of syntax
(Vinyals et al., 2015a), RNNGs have the advan-
tage of explicitly modeling syntactic composition
between constituents, by combining the vector rep-
resentation of child constituents into a single vec-
tor representation of their parent using a neural net-
work. Kuncoro et al. (2017) show that such compo-
sitions are the key to the success, and further inves-
tigate several alternatives neural network structures.
In particular, they compare vanilla LSTMs to atten-
tion networks when composing child constituents.
Interestingly, the attention values represent syntac-
tic heads among the child constituents to some ex-
tent. In addition, the vector constituent representa-
tion implicitly reflects constituent types. Their find-
ing is consistent with ours in that a neural network
can learn pure syntactic head information from con-
stituent vectors.

8.3 Relation Extraction
Our head-lexicalized tree model can be used for all
tasks that require representation learning for sen-
tences, given their constituent syntax. One exam-
ple of future work is relation extraction. For exam-
ple, given the sentence “John is from Google Inc.”, a
relation ‘works in’ can be extracted between ‘John’
and ‘Google Inc.’.

Miwa and Bansal (2016) solve this task by using
the Child-Sum tree representation of Tai et al. (2015)
to represent the input sentence, extracting features
for the two entities according to their related nodes
in the dependency tree, and then conducting rela-

tion classification based on these features. Head-
lexicalization and top-down information can poten-
tially be useful for improving relation extraction in
the framework of Miwa and Bansal (2016).

9 Conclusion

We proposed lexicalized variants for constituent tree
LSTMs. Learning the heads of constituents auto-
matically using a neural model, our lexicalized tree
LSTM is applicable to arbitrary binary branching
trees in CFG, and is formalism-independent. In ad-
dition, lexical information on the root further al-
lows a top-down extension to the model, result-
ing in a bidirectional constituent Tree LSTM. Ex-
periments on two well-known datasets show that
head-lexicalization improves the unidirectional Tree
LSTM model. In addition, the bidirectional Tree
LSTM gives superior labeling results compared to
both unidirectional Tree LSTMs and bidirectional
sequential LSTMs.
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