
Implicit Syntactic Features for Targeted Sentiment Analysis

Yuze Gao†, Yue Zhang† and Tong Xiao‡
Singapore University of Technology and Design†

Northeastern University‡

yuze gao,yue zhang@sutd.edu.sg
xiaotong@mail.neu.edu.cn

Abstract

Target-dependent sentiment analysis in-
vestigates the sentiment polarities on given
target mentions from input texts. Dif-
ferent from sentence-level sentiment, it
offers more fine-grained knowledge on
each entity mention. While early work
leveraged syntactic information, recent
research has used neural representation
learning to induce features automatically,
thereby avoiding error propagation of syn-
tactic parsers, which are particularly se-
vere on social media texts.
We study a method to leverage syntac-
tic information without explicitly build-
ing parser outputs, by training an encoder-
decoder structure parser model on stan-
dard syntactic treebanks, and then lever-
aging its hidden encoder layers when
analysing tweets. Such hidden vectors
do not contain explicit syntactic outputs,
yet encode rich syntactic features. We
use them to augment the inputs to a
baseline state-of-the-art target-dependent
sentiment classifier, observing signifi-
cant improvements on various benchmark
datasets. We obtain the best accuracies on
two different test sets for targeted senti-
ment.

1 Introduction

Target-dependent sentiment analysis investigates
the problem of assigning sentiment polarity labels
to a set of given target mentions in input sentences.
Some example are shown in Table 1. For instance,
given a sentence “I like [Twitter] better than [Face-
book]”, a target-specific sentiment model is ex-
pected to assign a positive (+) sentiment label on

“I like [Twitter]+ better than Facebook”
“I like Twitter better than [Facebook]−”
[lindsay lohan]0 goes on yet another emo rant on
her twitter.
Choose [NBI]+ for insulation, home energy au-
dits, housing repairing, air sealing, windows and
doors,furnaces, air conditioners and en energy
efficient appliances.

Table 1: Target-dependent sentiment analysis

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14

Left Context Target Right Context

⊕ RL

- + 0

Figure 1: Sentence level context

the target Twitter and a negative (−) sentiment la-
bel on the target Facebook.

The task has been addressed using neural net-
work models, which learn target-specific represen-
tations of the input sentence. These representa-
tions are then used for predicting target-dependent
sentiment polarities. In particular, Dong et al.
(2014) derive the syntactic structure of input sen-
tence using a dependency grammar, before trans-
forming the tree structure to a target-centered
form. A recursive neural network is used to trans-
form the dependency syntax of a sentence into a
target-specific vector for sentiment classification.
More recently Vo and Zhang (2015) split the in-
put sentence into three segments, with the target
entity mention being in the center, and its left and
right contexts surrounding it, as shown in Figure 1.



xb

Hidden Vectors  fb
(Implicit Syntax)

xt
*

xt

Top sentiment Model

Input [web; wet; posb]

Bottom syntactic Model

Figure 2: Model structure

Rich word embedding features are extracted from
the target entity mention and its contexts, which
are then used for classification by a linear SVM
model. Without using syntactic information, this
model gives better accuracies compared with the
method of Dong et al. (2014).

Since syntactic parsing of tweets can be inac-
curate due to intrinsic noise in their writing style,
most subsequent work followed Vo and Zhang
(2015), avoiding the use of syntactic informa-
tion explicitly. Zhang et al. (2016) applied a bi-
directional Gated RNN to learn a dense represen-
tation of the input sentence, and then use a three-
way gated network structure to integrate target en-
tity mention and its left and right contexts. The
final resulting representation is used for softmax
classification. Tang et al. (2015) also use a RNN
(LSTM) to represent the input sentence, yet di-
rectly integrating the target embedding to each
hidden state for deriving a target-specific vector,
which is used for sentiment classification. Liu and
Zhang (2017) extended both Zhang et al. (2016)
and Tang et al. (2015) by introducing the attention
mechanism, obtaining the best accuracies on both
datasets so far.

Intuitively, syntactic information should be
useful for sentiment analysis given a target,
since target-related semantic information such as
predicate-argument structure information is con-
tained in syntactic structures. The main issue of
Dong et al. (2014)’s method is that explicit syn-
tactic structures are inaccurate and noisy. We try
to avoid this issue by using implicit syntactic in-
formation, by integrating the hidden feature layers
of a state-of-the-art neural dependency parsing as
features to the state-of-the-art targeted sentiment
classification models of Liu and Zhang (2017), us-
ing neural stacking (Zhang and Weiss 2016; Chen
et al. 2016). The main structure of our model is
shown in Figure 2.

We choose the parser of Dozat and Manning

(2016) as our syntactic model, which gives the
best results on a WSJ benchmark by using multi-
layer LSTMs to encode rich input information.
The structure of the model is shown in Figure 4,
which first learns a vector form of each input word
(W and T), and then uses a simple bi-affine atten-
tion mechanism to find word-word relations. The
feature vectors (A and D) thus contain rich syn-
tactic information about each word, yet do not ex-
plicitly specify the syntactic structure of the sen-
tence. Hence, using them as features gives our
model more syntactic background of the sentence,
yet without suffering from error propagation.

Results on both the dataset of Zhang et al.
(2016) and the dataset of Tang et al. (2015) show
that syntactic information is highly useful for im-
proving the accuracies of target-dependent senti-
ment analysis. Our final models give the best re-
ported results on both datasets. The source code is
released at https://github.com/CooDL/
TSSSF.

2 Model

As shown in Figure 2, our neural stacking model
consists of two brief components: a bottom level
syntactic model for obtaining the syntactic infor-
mation and a top level sentiment model for target-
dependent sentiment classification.

2.1 Input representation

Given an input sentence, we first obtain its word
representations. In particular, we train two sep-
arate word embedding sets for the bottom level
syntactic model and top level sentiment model, re-
spectively, denoted as web and wet, respectively.
This is because our syntactic parser is trained on
news data, while our sentiment classification is
trained on Twitter data.

In addition, for the bottom syntactic model, we
also use optionally part-of-speech tag embeddings
posb, which are randomly initialised and learned
during the training of the model. Formally, given
a word w, the representation for the bottom level
model is:

xb = web ⊕ posb,

and the input form of the top level model is

xt = x∗t ⊕ fb = wet ⊕Bottom(xb)

Here we use Bottom(xb) indicate the bottom
level syntax model.

https://github.com/CooDL/TSSSF
https://github.com/CooDL/TSSSF


w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Figure 3: POS-tagging model

2.2 Syntactic Sub Models

The twitter data suffer poor accuracies by syntax
parsers in contrast with news data such as PTB.
Directly using explicit twitter syntax features has
an error propagation problem. We use a pre-
trained syntax model to turn raw word embeddings
into implicit syntactic features. Both a POS model
and a dependency model are used to utilize syntax
features.

2.2.1 POS Model
We employ a simplified bi-directional LSTM
(BiLSTM) POS-tagging model (see Figure 3),
trained on PTB3 (Toutanova et al. 2003; Labeau
et al. 2015). As for every sentence sequence
w1, w2, ..., wn, its corresponding word embedding
sequence x1, x2, ..., xn, we integrate its word
embedding into a k1-layer BiLSTM:

S′ = [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])k1 , (1)

where S′ is the k1-layer BiLSTM hidden
state output. A classifier is then used to weight the
hidden state of each word in S′ and derive the la-
bel. HereW1 is the weight matrix and b is the bias:

Labels = Classifier(W1S
′ + b), (2)

The BiLSTM hidden layer h1, h2, ..., hn and
the result of W1S

′ + b (the labels’ logits) will act
as our implicit syntactic features.

2.2.2 Dependency Model
In this model, we use a dependency parser to re-
place the POS-tagging model in Section 2.2.1.
In particular, the model of Dozat and Manning
(2016) is used, which fuses several BiLSTM lay-
ers to encode the input sentence before doing

W T W TW T W T……

……h1 h2 hn-1 hn

MLP MLP MLP MLP……

A D A DA D A D

CLF CLF CLF CLF……

……

S11:n S21:n Sn-11:n Sn1:n……

Figure 4: Dependency parsing model

bi-affine attention to learn dependency arcs be-
twtween different words.

Two different dependency models are trained:
one being a POS⊕ dependency with bottom
input web ⊕ posb, one being no-POS dependency
model with just word embedding web. , given
a sentence sequence w1, w2, ..., wn, it integrates
the word embedding web(W) and POS-tag
embedding posb(T) into a k2-layer BiLSTM
and generate the LSTM states S′ of the words
in sentence S, here xi = weib⊕posib, hi =

←−
hi⊕
−→
hi ,

S′ = [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])k2 , (3)

MLP (Multilayer Perceptron) layers are used to
reduce the dimension size and build features from
the BiLSTM state output S′. Here it gives four
kind features: headarc, headdep, relarc, reldep:

headarc, headdep, relarc, reldep
= MLP([h1, h2, ..., hn])k3 , (4)

Based on the features, a bi-affine classifier gives
every word in the sentence S a corresponding
dependency head using the feature headarc(A)
and headdep(D). We obtain the head relation set
S
′
head = {headji , i, j ∈ [1, n]}:

headji = Classifier(headiarc, head
j
dep) (5)

Another bi-affine classifier is used to clas-
sify the dependency relation based on the
feature headarc(A), headdep(D) and headji ,
and we obtain the rel relation label set
S
′
rel = {relji , i, j ∈ [1, n]}:

relji = Classifier(headiarc, head
j
dep, head

j
i ),(6)



b w ……b w b w b w b w b w…… ……

h1 h2 ht1 htm hn-1 hn

⊕ ⊕ ⊕ ⊕ht

h1 h2 hn-1 hn……

α1 α2 αn-1 αn……

Sα’

⦿
⦿

⦿ ⦿

Classifier P

Figure 5: Target-dependent sentiment analysis
with attention, shadow parts donate the attention
part in a sentence

Using the two classifiers, we obtain the depen-
dency root and relation between every two words
in the sentence S. We pre-train the dependency
parser model with 4 bi-directional LSTM layers
and 2 layers of MLP, and use its intermediate out-
put (the MLP output vector) as implicit syntactic
feature inputs to the top sentiment model.

The normal dependency syntax model shares
the same network frame with the no-POS depen-
dency model. They have slight differences in the
classifier. Both models are end-to-end denpen-
dency parsers with different initial inputs. We
choose the same output (Bi-LSTM hidden vector
and MLP vector) of the two models as implicit
syntactic features.

2.3 Target-dependent Sentiment Model
We use the attention-based model of Liu and
Zhang (2017) as our top level model. The overall
structure is shown in Figure 5. Given a sentence,
it first uses several BiLSTM layers to learn its
syntactic features, and then an attention layer is
used to select the relative wegihts of the words
according to the target entity over the untargeted
words in the whole sentence (Bahdanau et al.
2014; Yang et al. 2016). In particular, for a target
word, it applies the target word hidden vector to
find a weight forevery word (except the target
words) in the sentence (see Figure 5). The model
also uses a BiLSTM to represent the feature
layer from bottom syntactic model fb(b) and the
word embedding wet(w) of a word sequence
w1, w2, ..., wn as the hidden vector of each word.

[h1, h2, ..., hn] = BiLSTM([r1, r2, ..., rn])k4 ,(7)

where ri = f ib ⊕ weit and k4 is the BiLSTM

layer number.
The target phrase words ht1 , ht2 , ..., htm are

represented as one vector ht( ht /∈ [h1, hn]). It
is the average of the target phrase words hidden

vectors, ht = 1
m

m∑
i=1

hti .

We build a vanilla attention model by calcu-
lating a weight value αi for each word in the
sentence. The sentence S then can be represented
as follows:

S′α = Attention([h1, h2, ..., hn], ht)

=
n∑
i=1

αihi, (8)

where αi = exp(βi)/
n∑
j=1

exp(βj).

The weight scores βi are calculated by using
target representation ht and each word hidden
vector representation in the sentence,

βi = UT tanh(W2 · [hi : ht] + b1), (9)

The sentence representation S′α is used to
predict the probability vector P sentiment labels
on target by:

P = Classifier(W3 · S′α + b2), (10)

2.4 Training

Our training procedure consists of two steps, one
being to pre-train the bottom syntactic models, the
other being to apply the pre-trained bottom syn-
tactic model and train the top sentiment analysis
model.

All models are trained by minimizing the sum
of cross-entropy loss and a L2 regularization loss
of all trainable weights ∆W .

loss = 1
n

n∑
i
σ(yi, y

′
i) + λ

2 ||∆W ||
2, (11)

The model feature inputs (word embeddings,
POS-tag embeddings) are the sum of a trainable
embedding and a pre-trained (or learned) embed-
ding. All the weight matrix will be initialized
with an orthogonal loss less than 1e−6.

We choose different intermediate outputs of dif-
ferent bottom level syntax models. For POS-
tagging model, we use the BiLSTM hidden out-
put (lmpos) and POS-tags vector before softmax
(ltpos). For the dependency sub model, we utilize



Bottom Syntactic Model
LSTM Size(dblstm) 300
MLP Size (dmlp) 100
LSTM Layers(POS Model) (k1) 2
LSTM Layers(Dep. Model) (k2) 4
LSTM Dropout Rate (drblstm) 0.6
MLP Layers ( k3) 2
MLP Dropout Rate (drmlp) 0.67
Batch Size(bb) 1000
Word Embeddings (dbw) 100
POS Embeddings (dpos) 100

Top Sentiment Model
LSTM Size(dtlstm) 200
LSTM Layers(k4) 1
Word Embedding(dtw) 200
Batch Size(bt) 200
LSTM Dropout Rate(drtlstm) 0.5

Same Parameters
Word Minimum Occurance 3
Learning Rate(lr) 0.02
Learning Rate Decay Rate(lrspeed) 0.75
Decay Steps(lrdistance) 1500
Random Seed 1314
Train Iterations 30000

Table 2: Hyper-parameters values

the last BiLSTM layer hidden feature(lmdep) and
the MLP layer output (mlpdep) optionally.

3 Experiments

We evaluate the performances of our model and
compare them with state-of-the-art results using
two standard datasets for target-dependent senti-
ment (Zhang et al., 2016; Tang et al., 2015). The
PTB3 dataset is used to pre-train our bottom level
syntax models.

3.1 Data
We conduct experiments on two datasets, one be-
ing the training/dev/test dataset of Zhang et al.
(2016) (Z-Set), which consists of the MPQA cor-
pus1 and Mitchell et al. (2013)’s corpus2, the other
being the dataset of the benchmark training/test
dataset of ? (T-Set), we label these datasets’ POS-
tags with the open parser tools ZPar (Zhang and
Clark, 2011). Two sets of word embedding are
used in this experiment: The GloVe3 (Penning-
ton et al., 2014) twitter embedding (100 dimen-
sions) for the bottom model, and the GloVe twit-

1http://mpqa.cs.pitt.edu/corpora/mpqa corpus/
2http://www.m-mitchell.com/code/index.html
3https://nlp.stanford.edu/projects/glove/

Total Pos Neg Neu

T-set
Train 6248 1561 1560 3127
Test 692 173 173 346

Z-set
Train 9489 2416 2384 4689
Dev 1036 255 272 509
Test 1170 294 295 581

Table 3: Sentiment Distribution

10 20 30 40

0

100

200

Z-Set
T-Set

Figure 6: Test-set length distribution

ter word embedding (200 dimensions) for the top
target-dependent sentiment analysis model. Also,
due to lack of syntactically labelled twitter data,
we used the PTB3 dataset to pre-train our bottom
models. We follow the standard splits of PTB3,
using 2-21 as the bottom model training data, sec-
tion 22 for the development set and 23 as the test
set.

We calculate statistics on sentiment polorities
and lengths for both datasets. Table 3 shows the
same percentage of three sentiment labels and Fig-
ure 6 shows length distribution on the test sets.

3.2 Trainning Settings

First, we use the PTB3 dataset with the stan-
dard split method pre-train the POS syntax model
and dependency syntax model with the hyper-
parameters listed in Table 2. A best model on the
devset is saved for the neural stacking bottom syn-
tax model.

Once obtaining the pre-trained bottom syntax
model, we build the top sentiment model based on
intermediate output syntax model features fb and
top word embedding wet.

3.3 Hyper-parameters

Embedding Size: Our embedding is a superposi-
tion of a trainable and a pre-trained word embed-
ding. We fixed the word embedding dimension of
web and wet to 100 and 200, respectively to match
two pre-trained GloVe word embeddings set from
Pennington et al. (2014).



Models Acc.(%) F1(%) UAS LAS
POS-tagging 92.4 91.6 / /
Normal Dep. / / 95.6 93.8
No-POS Dep. / / 94.3 92.7

Table 4: Results for Syntactic Sub Model on PTB3
development set.

Dropout Rate: Dropout wrappers are applied to
both the bottom level syntax model and top level
sentiment model to avoid overfitting and learn bet-
ter features. For the bottom syntax model, we
use the PTB3 dataset to pre-train and tune hyper-
parameters. A dropout rate of ξ = 0.6 for the
BiLSTM layer and a softmax classifier layer to
classify the learned features from hidden BiLSTM
vector are used, respectively. Dropout rates of
ξ = 0.6 and ξ = 0.67 are applied to every sec-
ond BiLSTM layer and MLP layer, respectively,
in the dependency model. We gain the best results
(see Table 4) of different bottom syntax models on
the PTB3 dataset.

For the top sentiment model, we use the model
with only top word embedding inputs as our base-
line. Here, the bottom syntactic features fb are
pre-processed with a dropout wrapper of φ = 0.5
before being concatenated to the top model word
embedding wet, which is also wrapped with a
dropout of ϕ = 0.8 for training models.
Training: We tune the hyper-parameters of the
bottom syntax model on the PTB3 development
set and top sentiment on the Z-Set development
set. Words that occur less than a minimum amount
of 3 times are treated as unknown words. Standard
SGD with a decaying learning rate (2e−2) is used
for optimization, where the decay rate (0.75) is
used to reduce the learning rate after each training
iteration step (lrdistance).

lrnew = lr · (lrspeed)totalsteps/lrdistance , (12)

There are several hyper-parameters in our mod-
els. We tune all the model hyper-parameters on
the dev set with grid-search. With a learning rate
of ϕ = 2e−2, we did a large parameter iteration
on learning rate decay steps lrdistance, decay rate
lrspeed, batch size (bb&bt) and dropout. The batch
size (bb&bt) has a great impact on model weights
gradient and training speeds, and we choose a
balanced point of 200 and 1000 for top and bot-
tom model respectively. The decaying learning
rate can also help in avoiding early overfitting and

Models Acc.(%)
Baseline 73.24
+lmpos 73.53
+ltpos 73.34
+lmpos&ltpos 73.81
+mlpdep 74.23
+lmdep 73.96
+lmdep&mlpdep 74.59

Table 5: Dev set accuracies for sentiment sub
model

73 73.5 74 74.5

4
3

2
1

Top 2
Top 3

All

73.96

73.88

73.67

73.32

74.07

74.13

74.17

Table 6: Dev Results on BiLSTM feature layers

large weights optimization. The details of other
hyper-parameters are listed in Table 2.

3.4 Development Experiments

Syntactic features: We measure the efficience of
different syntax features; the results are listed in
Table 5. Within syntactic features, the baseline
system (our implementation of Liu and Zhang
(2017)) gives an accuracy of 73.24%. With only
POS features, the accuracies can reach 74.23%,
which is significantly (p < 0.01 by T-test) higher.
With dependency information, the accuracy
further rises to 74.59%, which is significant
improved by 1.4 points to the baseline. This
shows that syntactic information is indeed useful
for target-dependent sentiment classification.
BiLSTM Layers: We also concatenate the hidden
BiLSTM vector from different layers to construct
a fast forword feature network to build feature
from the dependency model.

lmdep = MLP(CONCAT(lmdep[1 : n])), (13)

here, MLP is used to reduce the concate-
nated lmdep dimensions and (1 <= n <= 4).
A dropout wrapper of φ = 0.6 is applied for the
concatenated LSTM vectors lmdep[1 : n].

The results of fast forwards features from dif-
ferent LSTM layer are shown in Tabel 6. Here



Acc.(%) F1(%)
Models Zset Tset Zset Tset

Jiang et al. (2011) / 63.4 / 63.3
Dong et al. (2014) / 66.3 / 65.9
Vo and Zhang (2015) 69.6 71.1 65.6 69.9
Tang et al. (2015) / 71.5 / 69.5
Zhang et al. (2016) 71.9 72.0 69.6 70.9
Liu and Zhang (2017) 73.5 72.4 70.6 70.5
Baseline 73.0 71.7 70.2 70.1
+ lmpos [a] 73.5 72.4 71.2 70.4
+ ltpos [b] 73.2 72.0 70.8 70.2
+ lmpos&ltpos [c] 73.9 72.5 71.4 70.7
+ lmdep 73.5 72.2 70.7 70.6
+ mlpdep 74.0 72.6 71.3 70.9
+ lmdep&mlpdep 74.1 72.7 71.7 71.3
+ lm∗dep [d] 73.3 72.4 70.9 70.5
+ mlp∗dep [e] 74.2 72.8 71.3 70.5
+ lm∗dep&mlp∗dep [f] 74.3 72.8 71.8 71.4

Table 7: Test set results with different syntactic
features, the features with ∗ means they are built
from the no-POS dependency syntax model

we refer to the first BiLSTM layer as 1, and the
last BiLSTM layer as 4. Top 2 indicates the
layer3 & layer4. Without fast forward connec-
tions, the results are 73.24%. With setting 1 to 4,
the accuracies increase from 73.24% to 73.32%,
73.67%, 73.88% and 73.96%, respectively. Fi-
nally, the best results are obtained with 74.17%.
We thus use the settings layer4 for final tests, for
a nice balance of efficiency and accuracy.

3.5 Results

We conduct final tests on the test set of Z-Set
and T-Set, respectively investigating two ques-
tions. First, we verify whether this kind implicit
features enhance the accuracy of twitter target-
dependent sentiment analysis. Second, we mea-
sure how syntax affect target-dependent sentiment
analysis results.

First, we compare the effects of different fea-
tures on target target-dependent sentiment analy-
sis. We take the top model with only word em-
bedding inputs as our baseline system. The results
are listed in Table 7. We can see that the syntac-
tic features contribute to enhancing the accuracy
of target-dependent sentiment analysis. Compared
with our baseline on both test-set, we obtain an in-
crease of Acc. by 1.3 points (p < 0.01) on Z-Set
and 1 point (p < 0.05) on T-Set. For the POS-
tagging model, the lmpos feature provides more
information than the ltpos feature, and the ltpos has

Pos Neg Neu

Z-Set
Baseline 61.64 69.83 78.67
POS[c] 61.43 70.17 78.97
DEP[f ] 61.14 71.14 79.63

T-Set
Baseline 62.57 69.36 75.70
POS[c] 61.84 69.41 77.62
DEP[f ] 62.74 70.31 78.42

Table 8: F1 values(%) of each polarity on test set
of Z-Set, T-Set, the POS[c] and DEP[f ] indicate
the features listed in Table 7

10 20 30 40

71

72

a
b
c
d
e
f

Figure 7: Test-set Accuracy against sentence
length (Z-Set), a,b,c,d,e,f indicate the features
listed in Table 7, respectively

little impact in their combination case.

The dependency model features work better
than the POS-tag features. lmdep is weaker than
the mlpdep feature, since mlpdep feature contains
more learned and special features, which provide
the model with sentence level dependency struc-
ture.

Second, we separately test the effect of features
made with respect to different sentence lengths
and sentiment polorities. As two datasets have dif-
ferent max sentence lengths (Z-set 84 words, T-set
44 words), we focus on the length range [10,40]
and treat the sentence with length 10- and 40+
as 10 and 40, respectively. The results are listed
in Table 8, Figure 7 (Here we use the test set of
Zhang et al. (2016)). The POS-tags features (a,b,c
in Table 7) have advantages in short sentence (10-
15 words), it gains a significant higher than the
dependency features. In contrast, the dependency
features (d,e,f in Table 7) show larger contribution
on longer sentence (30-40 words).

Finally, our model gives a F1 score of 71.8%
and 71.4% on both test sets, respectively, which
are the best reported results so far.



3.6 Analysis

The results show that features have different con-
tributions to enhance the accuracy of targeted sen-
timent classification. The bottom syntax model
output contains different syntactic information.
Using them as features do contribution to the top
model gain the information about sentence struc-
ture or word interrelation.

The POS-tagging model features perform well
on short sentences. We believe that a POS-tagging
model feature vector contains relation between a
present word and its POS context words. This
matches its adjacent words, helping model gain lo-
cal phrase-level structure information. For exam-
ple, if a word has a VB tag and its adjacent words
are RB and NN, a tighter relation will be generated
between VB and NN.

Phrase-level structure contributes to short sen-
tences, but can be ambiguous for long sentence.
Even though a RNN can learn some sentence-
level information, with the increasing of the sen-
tence length, this local benefit can decrease gradu-
ally. This can be the reason of the result in Figure
7 where the F1 value of the POS-tagging model
drops as the sentence length increase.

The stable performance of the dependency
model in Figure 7 suggests that the overall sen-
tence structure and local phrase-level structure can
be both provided by the dependency model fea-
tures. The more nonlocal sentence structure can
help the model grasp the sentence sentiment eas-
ier. It has a slightly weakened in the overall struc-
tures of longer sentence.

The benefits from semantic features is structural
and non-sentiment related. Though POS-tag infor-
mation can generate dependency relations, we use
the PTB3 data to pre-train the bottom level mod-
els, where noise may weaken the advantages. In
contrast, the dependency model contains more de-
tailed information, and is useful for PTB-like for-
mal data. The effect can be discounted on twitter
data. The results from Table 8 show that the F1
values show no significant variation on different
sentiment polarities.

3.7 Attention values

We compared both types of features with the base-
line on the attention values and structural relation
between words (Figure 8). The relation is com-
puted by the top model LSTM hidden vector un-
der feature [f ] in Table 7. The grey level cor-

[lindsay lohan] goes on yet another emo rant on her twitter .

Baseline:
+POS:
+DEP:
TEXT:

…

…

…

Choose [NBI] for insulation , air … air conditioners and en energy efficient appliances .

Baseline:
+POS:
+DEP:
TEXT:

(a) emo word attention to others

(b) efficient word attention to others

Figure 8: Word attention under implicit syntactic
features, darker grayscale means closer attention

responds to their attention values. Darker colors
mean closer attention. Here the baseline is the top
model with only word embedding inputs. Figure
8(a) is a short sentence (12 words). We can see that
the different features do not affect the sentence
structure significantly. The POS-tagging model
features focus on its adjacent and related words,
such as the word ‘emo’, which has a tight relation
with the adjacent word ‘rant’ and its adjunct word
‘another’. When the sentence length increases, the
difference between POS and DEP becomes obvi-
ous. In Figure 8(b), the DEP has more related
darker grey words attention compared to a nor-
mal word in the sentence (20+ words, we here
hide some words due to limited space). For the
phrase ‘en engery efficient appliances’, for exam-
ple, the POS features give shallow local relations,
but deep remote semantic relations are given by
the DEP features, such as the nominal modifier
word ‘Choose’ and its paralleling structure word
‘insulation’.

4 Conclusion

We investigated the use of implicit syntactic fea-
tures for improving target-dependent sentiment
analysis, by using hidden word representations of
a state-of-the-art parsing to augment the input of
a state-of-the-art target-dependent sentiment clas-
sifier. Neural stacking is used, where the parser is
first trained using news article data, and then fine-
tuned during the training of the sentiment classifi-
cation system. In this way, our method leverages
syntactic information, which is intuitively useful
for target-dependent sentiment analysis, yet does
not suffer from error propagations of using ex-
plicit syntactic parsing output features. Results
on two target-dependent sentiment datasets show
that our use of syntax can significantly enhance



the accuracies of the baseline model, and our final
model outperforms existing methods that use ex-
plicit syntactic features and without syntactic fea-
tures, giving the best accuracies on both datasets.

Acknowledgement

We thank the anonymous reviewers for their de-
tailed and constructive comments. Yue Zhang is
the corresponding author.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Hongshen Chen, Yue Zhang, and Qun
Liu. 2016. Neural network for het-
erogeneous annotations pages 731–741.
https://www.aclweb.org/anthology/D/D16/D16-
1070.pdf.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In ACL (2). pages 49–54.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734 .

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and
Tiejun Zhao. 2011. Target-dependent twitter senti-
ment classification. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1. Association for Computational Linguistics, pages
151–160.

Matthieu Labeau, Kevin Löser, Alexandre Allauzen,
and Rue John von Neumann. 2015. Non-lexical
neural architecture for fine-grained pos tagging. In
EMNLP. pages 232–237.

Jiangming Liu and Yue Zhang. 2017. Attention mod-
eling for targeted sentiment. EACL 2017 page 572.

Margaret Mitchell, Jacqueline Aguilar, Theresa Wil-
son, and Benjamin Van Durme. 2013. Open domain
targeted sentiment. In EMNLP 2013. pages 1643–
1654.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu.
2015. Effective lstms for target-dependent senti-
ment classification. In COLING. pages 3298–3307.

Kristina Toutanova, Mark Mitchell, and Christopher D
Manning. 2003. Optimizing local probability mod-
els for statistical parsing. Lecture notes in computer
science pages 409–420.

Duy-Tin Vo and Yue Zhang. 2015. Target-dependent
twitter sentiment classification with rich automatic
features. In IJCAI. pages 1347–1353.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
NAACL-HLT . pages 1480–1489.

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016.
Gated neural networks for targeted sentiment analy-
sis. In AAAI. pages 3087–3093.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. arXiv preprint arXiv:1603.06598 .

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational linguistics 37(1):105–151.

https://www.aclweb.org/anthology/D/D16/D16-1070.pdf
https://www.aclweb.org/anthology/D/D16/D16-1070.pdf
https://www.aclweb.org/anthology/D/D16/D16-1070.pdf
https://www.aclweb.org/anthology/D/D16/D16-1070.pdf

