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Abstract. The question of how the human brain represents conceptual knowledge
has received significant attention in many scientific fields. Over the last decade,
there has been increasing interest in the use of deep learning methods for analyzing
functional magnetic resonance imaging (fMRI) data. In this paper, we report a
series of experiments with neural networks for fMRI encoding and decoding. Re-
sults show that by using neural networks, both encoding and decoding accuracies
are improved compared to a linear model on the same input. To evaluate the con-
textual information influences in cognitive modeling, we also extend the stimuli
dataset from single noun to description sentences. The experiments indicate the
impact of context information varies from person to person. To illustrate the strong
correlation between linguistic and visual representations in the human brain, we
extend the stimuli from a single word to images which were not present to the
participant during fMRI data collection.
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1 Introduction

How a simple concept is represented and organized by the human brain has been of long
research interest [19,15,9]. The rising of brain imaging have now made it feasible to look
at the neural representation of such concepts within the brain. In particular, the functional
magnetic resonance imaging (fMRI) is a technique that allows for the visualization of
activated brain regions. Neurons consume more oxygen as they become active. fMRI
locates the activated neuron by measuring the blood-oxygen-level-dependent (BOLD)
contrast. It has become an essential tool for analyzing the neural correlates of brain
activity in recent decades.[42,33,30,31,38,37,22]

Many fMRI studies identify correlations between brain activity and a task the par-
ticipant performs during the scan. To this end, most current understanding has been
achieved by analyzing fMRI data from the viewpoint of encoding and decoding [32].
Here encoding refers to predict brain activity by using stimuli (Figure 1) and decoding
refers to predict stimuli by using brain activity. When analyzing data from the encoding
perspective, researchers aim to understand how activity in the brain varies when there is
concurrent variation in the real world. Neuroscientists have shown that distinct patterns
of fMRI activity are associated with the different stimulus, such as viewing semantic
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categories of pictures, including tools, animals, and buildings, reading an article which
describes a concrete or abstract concepts. When analyzing data from the decoding per-
spective, researchers attempt to determine how much can be learned about the word.
Generally speaking, decoding brain imaging is to tell what participant is thinking during
the scan.

. . .
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word

“hammer”

Predictive Model

Intermediate semantic features

Mapping learned from fMRI 

training data semantic features

Fig. 1. Predict fMRI from word stimuli

In NLP, the idea that a word’s context gives its meaning dominates the approach of
word representation. Consequently, a word can be represented as a high-dimensional
real-valued distributional semantic vector, where the similarity among vectors reflects
the similarity of contexts. These representations of linguistic meaning capture the human
judgments in various tasks (e.g., word analogy, word similarity judgment, and word
categorization). To test whether such word representations are also neurally plausible,
some studies have attempted to learn mappings between semantic vectors and brain
activation patterns. If such mapping can be learned and a model can be used to predict
brain activation to a new stimulus, the model can reflect some aspects of meaning
representation in the human brain.

[31] first introduced the task of taking a semantic representation of a single noun
and predicting the brain imaging elicited by that noun. Subsequent research [13] has
attempted to fulfill this task by using various word embeddings. Most of the above work
uses linear models, assuming that the concept representations are a linear combination
in the human brain. For example, the word ”celery” is the linear combination of concept
”eat”, ”taste”, ”fill”, etc. However, intuitively, the human brain is complex, which apart
from the linear combination, should also capture non-linear functions. This hypothesis
can be verified if a non-linear model can give high accuracy compared to a linear model
when fitting the same noun representation to the brain imaging output. In this paper, we
apply neural networks to capture complex knowledge representations and compare the
performances with a linear model. Results show that by using neural networks, both
encoding and decoding accuracies are improved compared to a linear model on the
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same input. This conforms our hypothesis that a non-linear function better simulates
brain activation, which is also intuitive. In addition, rather than end-to-end mapping,
associative thinking is also commonly believed as being involved in human cognition. For
example, image thinking can be involved when giving a stimulus word such as ”celery”.
As a result, it can be more accurate if a model is given a celery image as additional
input when providing brain images. To address this hypothesis, we also investigate the
impact of contextual and visual information of meaning representation in the human
brain. Specifically, we do the following experiments:

First, human brain combines information about a word with its context. To evaluate
how the context affects the meaning representation in mind, we extend the dataset [31]
from single noun to some descriptive sentences. To this end, Wikipedia is used as a
reference. For example, given the word ”celery”, the additional description extracted
from Wikipedia, ”Celery (Apium graveolens) is a marshland plant in the family Apiaceae
that has been cultivated as a vegetable since antiquity. Celery has a long fibrous stalk
tapering into leaves. Depending on location and cultivar, either its stalks, leaves, or
hypocotyl are eaten and used in cooking. Celery seed is also used as a spice and its
extracts have been used in herbal medicine.”, is used together with the noun itself as the
input.

Second, a growing body of evidence shows that visually embodied object represen-
tations elicited when participants are reading and contemplating object words [25,31,4].
More generally speaking, reading words evokes visual simulation, and viewing images
evokes semantic representations [5,43]. The brain region of conceptual representations
of linguistic is linked to visual perception. To illustrate this, we retrieve images from
ImageNet [10] and using image features build the brain encoding and decoding mod-
els. Results show that out of 8 participants, the brain activation of most can be better
predicted by adding visual inputs to the word, which strongly demonstrates that image
associative thinking exist in human perceptron of noun semantics. Interestingly, the brain
activation of 4 participants can also be better predicted by using the descriptive sen-
tence as additional input information, which shows that some people can do analytically
thinking when understanding a noun concept.

We investigate the cross-lingual brain encoding and decoding. The fMRI data are
collected from English native speakers. We want to explore the brain semantic represen-
tation difference among different language speakers. To this end, we use Chinese word
embeddings [45] to encode and decode brain imaging. Surprisingly, the accuracy is close
to using English word embeddings. This result suggests that semantic representations
can be irrelevant to the language itself.

Finally, although languages and cultures vary, perceptron of common concepts can
be universal across people.

In summary, we use neural network models to investigate aspects of meaning rep-
resentation in the human brain, showing that they better reflect cognitive functions
compared with linear models used in prior research. We additionally find that image
and descriptive sentences can help better predict fMRI as additional inputs to the noun
stimuli, which reflects that associative thinking is likely involved in the semantic under-
standing process. Interestingly, cross-lingual embedding inputs can give similar results
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for predicting fMRI images, which shows that there can be cross-lingual common ground
in semantic representations of words.

2 Related Work

In word embeddings, there are two main methods map words from vocabulary to vectors
of the real numbers. The first is one-hot encoding, in which each word is represented as
a vocabulary size vector of zeros except one position of one (e.g., apple = [1, 0, 0 ... 0],
fruit = [0, 0, 1, ..., 0]). The limitation of the one-hot representation is it fails to capture
the relationship between words because the words are perpendicular in one-hot encoding.
The other method to represent a word is distributed representation, in which word is
mapped to a vector space of continues real number. [29] first efficiently trained the word
embedding on Google News Corpus. The word to vector [29] is trained by language
modeling by using skip-gram or continues bag of words (CBOW) algorithm. The CBOW
is learning to maximize the probability of the target word by looking at the context while
the skip-gram is to predict the context. Similarly, the GloVe [35] is trained on aggregated
global word-word co-occurrence statistics from a corpus. The intuition underlying
the model is ratios of word-word co-occurrence probabilities have the potential for
encoding some form of meaning. There are many other versions word embeddings
e.g., [24,39,12,45,6,21], released by different institutions. The main advantage of the
distributed word representation mentioned above is that it captures the context of a word.
By distributed representation, word-word relation can be reflected, for example, the
cosine similarity of word vector apple and fruit is close compare to apple and car.

The brain encoding task was first introduced by [31], the task is to learn a mapping
between word embedding and the human brain imaging. To this end, [31] created
25-dimension word vector trained on [7] and learned a mapping by using the linear
model. In addition to using 25 semantic features [31], [20] incorporate the relatedness
measures based on WordNet. [11] choose a set of verbs for semantic features. [13] use
five semantic attributes directly related to sensory-motor experience-sound, color, visual
motion, shape, and manipulation. The relevance of these attributes to each word is rating
by the human.

On the decoding side, studies have shown that it is possible to accurately decode a
participant’s mental content for words [34,36,14,2], text snippets [47,17], or sentences
[28,46,3].

3 Methods

We build a linear model and a non-linear model for all our experiments. For the former,
we follow [31] and use linear regression as the main method. For the latter, a standard
multi-layer neural network is used.

For the encoding task, the inputs of the model are semantic features such as a single
word and the model is required to predict the corresponding fMRI activation. [31]
created 25 dimension distributed embeddings based on the co-occurrence statistics for
each stimulus. Each word vector gives the normalized co-occurrence frequency of the
stimulus noun with each of 25 verbs (i.e., see, say, taste, wear, open, run, neared, eat,
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hear, drive, ride, touch, break, enter, move, listen, approach, fill, clean, lift, rub, smell,
fear, push, manipulate). In this regard, a word is encoded into 25 semantic features. In
addition to the 25 distributed features, we use the GloVe word vectors [35] as distributed
semantic features. Compared with Mitchell’s word vector [31]; GloVe [35] has flexible
dimensions. With higher dimensions, the word can preserve rich semantic features.

The predicted value of yt a voxel t in brain for the word w can be written as

yt =

n∑
i=1

ctifi(w), (1)

where fi(w) is the ith semantic feature of w, n is the dimension of semantic feature and
cti is learn-able parameter. A multi-layer neural networks can be written as

yt =

M∑
i=1

ctihi + ci0 (2)

hi = max(0,

N∑
j=1

cjixj + cj0), (3)

where yt is the predicted value at voxel t, M is the number of hidden unit in a layer
and hi is the value of the ith hidden unit for word w. cti is the learned coffcient that
specifies the degree to which the ith semantic feature activates a voxel.

For the decoding task, the inputs are the fMRI images and outputs are predicted
semantic representations. The same algorithms are used.

3.1 Training Objective

To train a multiple regression classifier, if the number of training examples is larger than
the semantic feature dimension, a unique solution exists. Otherwise, a solution can be
obtained by introducing a regularization term. To train a neural network, we employ
the standard back-propagating [44] algorithm, which minimizes the mean square loss
between the real fMRI and predicted one.

Following [31], we train and evaluate separate computational models for each of the
nine participants by using a cross-validation approach. The model was trained repeatedly
by a leave-two-out procedure, in which the model was trained using 58 of the 60 stimuli.
The process iterates 1770 times. At test two, each trained model predicts the fMRI for
two ”left-out” words and then match predicted fMIR to their corresponding left-out ones.
Given a trained model, the two left-out words w1, w2 and their fMRI images i1, i2, the
model predicts the fMRI p1, p2 for w1, w2, respectively. It then decide which is the
better match (i1 = p1, i2 = p2) or (i1 = p2, i2 = p1) by computing the cosine similarity.
The match score S is calculated as

S(p1 = i1, p2 = i2) = cosine(p1, i1)

+ cosine(p2, i2).
(4)

Similarly, the match score for the decoder is the sum of cosine similarity between
actual and predicted word vectors.
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3.2 Incorporating Contextual Information in Encoding

We extend the dataset by retrieving an article for each noun manually from Wikipedia.
Each noun is assigned 3 to 6 sentences which describe the properties of the word. For
example, to describe the proprieties of the chisel, we retrieve the article: ’A chisel is a
tool with a characteristically shaped cutting edge (such that wood chisels have lent part
of their name to a particular grind) of blade on its end, for carving or cutting a hard
material such as wood, stone, or metal by hand, struck with a mallet, or mechanical
power. The handle and blade of some types of chisel are made of metal or of wood with
a sharp edge in it. Chiselling use involves forcing the blade into some material to cut it.
The driving force may be applied by pushing by hand, or by using a mallet or hammer.
In industrial use, a hydraulic ram or falling weight (’trip hammer’) may be used to drive
a chisel into the material. A gouge (one type of chisel) serves to carve small pieces from
the material, particularly in woodworking, wood-turning and sculpture. Gouges most
frequently produce concave surfaces. A gouge typically has a ’U’-shaped cross-section’.
To preserve contextual information, we apply convolution neural networks (CNNs) to
each article. The CNNs involves a filter W ∈ Rh, which is applied to a window of
h words to produce new features [23]. For example, a feature si is produced from a
window of words xi:i+h−1 by

si = f(w · xi:i+h−1 + b), (5)

where f(·) is a non-linear function and b is the bias term. Then substitute si into Eq. 3
as xj .

Since word embeddings are trained based on words that co-occur with one another
in a given corpus, they already encodes the context to some extent, why do we use the
article to encode/decode fMRI again? The answer can be the article describes the word
exclusively, provides detail and precision information, which contributes the high-quality
features for subsequent brain imaging encoding and decoding. Besides, a word can be
different meaning in multiple contexts, e.g., the word ”monster” in describing a computer
or a person. Using articles for encoding and decoding can eliminate ambiguity.

3.3 Image and Text Correlation

Conceptual representations of linguistic and visual perception are linked together in the
human brain [5,43]. The word comprehensiveness first involves activation of shallow
language-based conceptual representation and then complemented by deeper simulation
of visual properties of the concept [26]. The latter can play a much more critical role.

Based on the above argument, we assume that the image augmented model should
be able to encode and decode the brain activation elicited by a word. To this end, we
retrieve 300 to 1500 images for each noun from ImageNet [10], one of the largest image
databases, except ’hand’, ’foot’, ’arm’, ’leg’ and ’eye’. The ImageNet [10] does not
include these human body words. We retrieve these images from Google [18] and [1].

Deep Residual Network (ResNet) [16] is widely used in image recognition. It is a
deep neural network with many convolution layers stack together. With more convolution
layers, the network can extract rich image features. In our implementation, we use ResNet
to produce the image feature map. Concretely, we extract each feature of each image and
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then average all features of the same word. For example, an image feature map Fmapi
of image xi is produced by

Fmapi = resnet(xi), (6)
where resnet is the function that produces the feature map and Fmapi is a 2048

dimensional real value vector. Suppose there are N images of the word ’airplane’, we
produce the image feature map Fairplane of ’airplane’ by

Fairplane =

∑N
i=1 Fmapi

N
, (7)

then substitute Fairplane into Eq. 3 as xj to train the neural network.

3.4 Cross-lingual Embeddings

Is the semantic representation identical or various from different language speakers?
The question can be answered by decode the brain imaging collected from different
language speakers when shown the same word stimuli. With the word embedding, we
give a simple alternative to answer this question. Since the word embedding captures
semantic reasons while producing the text, if we can encode and decode the English
native speakers’ brain imaging using word embedding from a different language with
high accuracy, we gain evidence there is the common ground of semantic representation.

We choose Chinese word embeddings [45] in our work, which consists 200-dimension
vector representations which are pre-trained on large-scale high-quality data. These vec-
tors, capturing semantic meanings for Chinese words and phrases, can be widely applied
in many downstream Chinese processing tasks.

4 Experiments

We use the fMRI data from [31], which were collected from nine healthy, college-age
participants. The stimuli are line drawings and nouns labels of 60 concrete objects
from 12 semantic categories as Table 1. During data collection, the 60 word-picture
pairs were presented to each participant six times with randomly permuting. To create a
representative fMRI for each stimulus, we compute the mean fRMI response over its six
scans. The mean of all 60 representative images is then subtracted from each image.

4.1 Experimental Settings

We design four experiments to evaluate our models:

– In Experiment 1, we re-implemented the linear model with Micheal’s word vector
[31] and GloVe [35].

– In Experiment 2, we use multiple layer feed-forward neural networks to predict
fMRI activation.

– In Experiment 3, we incorporate the context into the model.
– In Experiment 4, we implement the linear and non-linear models to decode fMRI

and analyze the results, respectively. Also, we also use the image feature as input to
predict the fMRI activation.
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Table 1. The 60 noun and categories

Categories Words
man-made key, telephone, watch, bell, refrigerator
building igloo, apartment, barn, house, church
build part door, closet, arch, chimney, window
tool hammer, screwdriver, chisel, saw, pliers
furniture chair, dresser, desk, bed, table
animal bear, cat, horse, dog, cow
kitchen bottle, glass, spoon, cup, knife
vehicle truck, bicycle, car, train, airplane
insect fly, bee, ant, butterfly, beetle
vegetable carrot, corn, tomato, lettuce, celery
body part foot, eye, arm, leg, hand
clothing dress, coat, skirt, pants, shirt

4.2 Voxel Selected

The fMRI data is 3D image consists of voxels (volumetric pixels) covering millions of
brain neurons. It comes from the machine as stacked 2D slices. The number of voxels is
enormous, usually greater than 50000, it makes impossible to fit a standard linear model
[41] because the number of observations are usually far less than the voxels. To deal
with this problem, a simple way is to use a subset of the whole brain voxels. Depend on
the specific task; there are many algorithms to choose a subset of the voxels, in our work,
we follow [31]’s method to pick the 500 most stable voxels. During the training process,
each voxel was assigned a ”stability score” by using the data from 6 scan sessions of
the 58 training stimuli. The 500 most stable voxels ranked highest by this stability score
were used in the experiments.

4.3 Visualization of fMRI

t-SNE [27] is a supervised dimensionality reduction tool for visualization high-dimensional
data into two-dimensional space using stochastic neighbor embedding.

The fMRI data is high dimensional, to help understand the properties of the data, we
use t-SNE [27] to reduce the fMRI dimension to 2D and visualize them as Figure 2.

The dataset [31] consists of 360 brain imaging (fMRI) of 12 categories as Table 1.
In left side of the Figure 2, each point represents an reduced dimension fMRI data. We
assign different colors to each category and the label is the center of the category. Ideally,
the points in Figure 2 can be clustered to 12 categories and the distance between groups
should be large. In our visualization, the groups are not ideally separable, but we still can
find some valuable information from it. For example, the group of furniture, building,
build-part, vehicle are close and the group of kitchen, vegetable, tool are close. This
is accord to common sense since the vegetables and tools usually appear in a kitchen,
and furniture, building, build-part, vehicle regularly appear in the same scenario. When
we talk about the kitchen, it is very natural to think of tools such as cutlery and foods
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Fig. 2. Visualization of fMRI

Table 2. The average accuracy of the linear and non-linear encoders with different word vectors
for participant P1 to P9

WORD EMBEDDINGS LINEAR NON-LINEAR

[31] 0.79 0.77
GLOVE50 0.69 0.77
GLOVE100 0.74 0.80
GLOVE200 0.74 0.76
GLOVE300 0.77 0.78
TENCENT200 0.75 0.81

such as vegetables. When we talk about the apartment, it is more likely to think about
furniture, vehicle, building, and building part. The right side of the Figure 2 are images
we retrieved from [8,40], as we can see, vegetables and knife appear in kitchen while
furniture, building, build-part, vehicle appear together. But it is less likely think of car
when talking about the kitchen. The visualization of the fMRI data gives us a preliminary
conclusion that associative thinking is neurally plausible and can be reflected by fMRI
categorization.

4.4 Encoding

The linear model’s results of Experiment 1 are shown in the left column of Table 2.
From the results, we observe that with linear regression, Mitchell’s 25-dimensional word
vector [31] achieves the best prediction results, better than GloVe vectors [35]. The high
dimensional GloVe embedding [35] preserves rich semantic information compared with
the low dimensional vectors, but the result does not accord with intuition. There can be
two main reasons. First, Mitchell’s 25-dimensional word vector [31] is based on the most
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Table 3. The average accuracy of the linear and non-linear decoders with different word vectors
for participant P1 to P9

WORD EMBEDDINGS LINEAR NON-LINEAR

[31] 0.75 0.76
GLOVE50 0.81 0.84
GLOVE100 0.84 0.86
GLOVE200 0.82 0.85
GLOVE300 0.82 0.84
TENCENT200 0.84 0.87

Table 4. The accuracy of encoders with or without contextual information

PARTICIPANTS P1 P2 P3 P4 P5 P6 P7 P8 P9 AVG
WITHOUT CONTEXT 0.88 0.71 0.79 0.87 0.76 0.74 0.72 0.70 0.81 0.78
WITH CONTEXT 0.90 0.77 0.77 0.88 0.76 0.68 0.78 0.64 0.81 0.78

significant hand chosen semantic features which include the most common properties
of a noun. For example, the word ”celery” is represented as celery = 0.837 × eat +
0.346× taste+ 0.315× fill + ...+ 0×move, where the concept ”eat” contributes a
0.837 weight to celery, while to concept ”move” contributes a 0 to celery. This conforms
to common sense because celery is edible. GloVe [35], on the other hand, contains
distributed semantic features, which can be irrelevant. The second reason is that linear
regression is too simple to capture complex representations. Even if the GloVe [35]
preserves rich semantic information, where may not combine for the task. Hence a linear
model may not be the best choice to learn the mapping between the human brain and
the semantic representations. Instead, we need more expressive models to cope with the
complexity.

The non-linear model results of Experiment 2 are shown in right column of Table 2.
We observe that one hidden-layer neural network outweighs linear model on all GloVe
[35] variants. The results support the view that the concept representation is not linearly
combined in the human brain.

4.5 Deocding

We implement linear and non-linear decoders in Experiment 4. The results are summa-
rized in Table 3. We observe that both linear and non-linear models can decode fMRI.
The non-linear model outweighs the linear model on all word vectors. Both models have
significant improvements by using GloVe [35]. This result implies that the human brain
encodes semantic representation in a complicated function and a proper semantic space
is essential to brain decoding.

The decoding is an illustration of zero-shot learning [34] of the human brain as the
decoder can predict novel classes that were omitted from a training set with an accuracy
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Fig. 3. The impact of number of hidden layers

much higher than chance. After training on a semantic feature space, the decoder can
leverage a semantic knowledge base that encodes both training and test set features.

4.6 Impact of Hidden Layers

To evaluate the impact of network depth, we tested neural networks with one to five
hidden layers and summarized the results as Figure 3, from which we observe that as
the hidden layer increases, the accuracy decreases across all participants. Generally, the
model can fit complex data with more hidden layers. We expect that the model could
learn complex concepts from the semantic representations, but the result is the opposite.
The reason can be over-fitting.

4.7 Impact of Contextual Information

In Experiment 3, we incorporate contextual information into the non-linear model.
The results are summarized in Table 4. We observe that the impact of the contextual
information varies from person to person. Compared to Experiment 2, the accuracy of
participant P1, P2, P4, P7 increase, while that of P3 and P6 decrease. This result suggests
that humans can understand the same concept from different perspectives. Through
learning the mapping between large corpus-based semantic vectors and brain imaging,
we may find out how the human brain associates one concept or thought to another.

4.8 Similarities Between Predicted and Actual Images

Figure 4 are the observed and predicted fMRI of the word ”hand” after training uses 58
nouns. The left image is the observed fMRI, and the right one is the predicted. Although
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Fig. 4. Observed and predicted fMRI images for ”hand”

Table 5. The accuracy of encoders with word embedding and images

PARTICIPANTS P1 P2 P3 P4 P5 P6 P7 P8 P9 AVG
GLOVE300 0.88 0.71 0.82 0.83 0.80 0.76 0.69 0.67 0.77 0.77
IMAGES 0.93 0.79 0.82 0.89 0.78 0.79 0.81 0.66 0.81 0.81

the predicted fMRI is not perfect, it captures main components of the ground truth. The
yellow and green area near the top is the fusiform gyri. In neuroscience, the functionality
of the fusiform gyrus has been linked to recognition (e.g., processing of color information,
face and body recognition, word recognition, within-category identification).

To provide more insight into the non-linear model. Figure 5 depicts for participant
P1 the cosine similarity between each predicted images and real images.

4.9 Use Image Features to Encode Brain Imaging

We use the ResNet [16] extracted image features to predict the fMRI activation. Figure 6
is a part of celery images used in experiments. The result is obtained by using the linear
regression model and is summarized in Table 5. Six out of nine participants’ accuracy is
improved, and average 4% increase across all participants.

The result supports the view that word comprehension involves both linguistic and
visual processes in the human brain [26]. We use ResNet [16] to extract each image’s
feature as Eq. 6. The single image feature map contains noise, which leads to the model
fail to encode the brain imaging. We extract multiple image features and average them
on each dimension as Eq. 7. By means of sum up and average on all feature maps, the
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Fig. 5. Cosine similarity between actual and predicated images. The mean of the diagonal is
0.3371, wheres the mean of entire matrix is 0.0720. This indicates that the predicted image is
similar to the real image than others in general.

salient features of the celery are kept such as color, shape, texture, contour, etc., and the
noises are suppressed.

4.10 Cross-Lingual Analysis

The results of cross-lingual encoding and decoding are summarized in last line of Table
2 and Table 3. Intuitively, the difference of semantic representation among different
language speakers’ brain exists and can be reflected by using cross-lingual brain imaging
encoding and decoding. However, the experimental result is the opposite. The result of
encoding and decoding of English native speakers’ brain imaging by using Chinese word
embedding [45] are very close. Even though we cannot conclude the semantic represen-
tation is human-wide identical for sure, which needs more biological experiments, the
result still suggests the brain semantic representation among different language speakers
is highly correlated.

This finding brings many possibilities to incorporate the brain imaging data into NLP
models (e.g., leverage brain imaging to supervise the machine translation models).

5 Conclusion

We use a machine learning approach in understanding human cognition process of word
semantics, finding that non-linear models with distributed semantic vectors give better
accuracies compared to linear models with hand-chosen distributional vectors. This
reflects that word embeddings are a good representation of lexical semantics and that
human cognition involves non-linear activities, which is highly intuitive. We additionally
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Fig. 6. A part of celery images used in experiments

investigated associative thinking by using additional image and descriptive sentence
inputs to the non-linear model for predicting fMRI, finding that both are useful, with the
former being more effective. Finally, we found that cross-lingual word representations
can be equally useful in predicting brain images of English speakers, which shows that
there can be strong cross-lingual associations in word vectors. The dataset in this work
is relatively small, and the stimuli are all nouns, which limits our work in a small part
of brain understanding. We will extend our work to a sizeable semantic space, which
covers most of the human concepts in future work.
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