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Abstract
Extracting adverse drug events receives much re-
search attention in the biomedical community. Pre-
vious work adopts pipeline models, firstly recog-
nizing drug/disease entity mentions and then iden-
tifying adverse drug events from drug/disease pairs.
In this paper, we investigate joint models for si-
multaneously extracting drugs, diseases and ad-
verse drug events. Compared with pipeline models,
joint models have two main advantages. First, they
make use of information integration to facilitate
performance improvement; second, they reduce er-
ror propagation in pipeline methods. We compare
a discrete model and a deep neural model for ex-
tracting drugs, diseases and adverse drug events
jointly. Experimental results on a standard ADE
corpus show that the discrete joint model outper-
forms a state-of-the-art baseline pipeline signifi-
cantly. In addition, when discrete features are re-
placed by neural features, the recall is further im-
proved.

1 Introduction
Automatically extracting adverse drug events (ADEs) has re-
cently received much research attention in the biomedical
community [Gurulingappa et al., 2012; Yildirim et al., 2013;
Kang et al., 2014; Yildirim et al., 2014; Liu et al., 2014;
Yates et al., 2015; Wei et al., 2015]. As shown in Figure 1,
the task is to identify mentions of drugs and their side effects,
such as diseases that they cause, from a piece of raw text. It
plays important roles in pharmacovigilance and biocuration.

Traditionally, the extraction of ADEs involves two steps.
First, mentions of drug/disease entities are recognized in a
given sentence. This subtask is similar in nature to the task
of named entity recognition (NER) [Li and Ji, 2014]. Sec-
ond, each drug/disease pair is examined to decide whether
they have an ADE relation. This step can be casted as a clas-
sification problem and solved using statistical models such as
Support Vector Machines (SVMs) [Zhou et al., 2005].

The method above involves a two-step pipeline, where sub-
models of the steps are trained separately. One major disad-
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Gliclazidedrug-induced acute hepatitisdisease.
Hepatitisdisease caused by methotrexatedrug and

etretinatedrug .
Vitiligodisease associated with alpha interferondrug

in a patient with chronic active hepatitis C.
A woman who was treated for thyrotoxicosis with me-

thimazoledrug developed agranulocytosisdisease.

Figure 1: Example ADEs, where drug and disease mentions
are shown in green and red, respectively.

vantage in this method is error propagation: if a drug or dis-
ease is incorrectly recognized, the recognition of its related
ADEs will be incorrect. Joint models, which process all sub-
tasks simultaneously, have been proposed to avoid error prop-
agation in similar situations, such as word segmentation and
part-of-speech (POS) tagging [Zhang and Clark, 2008], NER
and parsing [Finkel and Manning, 2009], POS tagging and
parsing [Bohnet and Nivre, 2012; Zhang et al., 2012], mor-
phological generation and syntactic linearization [Song et al.,
2014], and entity and relation extraction [Roth and Yih, 2007;
Chan and Roth, 2011; Li and Ji, 2014]. Such methods exploit
the correlations between the relevant subtasks for mutual ben-
efit. We investigate joint entity recognition and ADE extrac-
tion by solving the two subtasks using a single model. One
additional advantage of joint methods is that they can model
the interactions between the drug/disease and ADE informa-
tion, which cannot be handled by pipeline methods.

The combined search space of a joint task can be signifi-
cantly larger than those of its subtasks, thereby making search
a challenging problem. Exact inference for our joint task can
be highly inefficient. To this end, we propose a transition-
based model to extract drugs, diseases and ADEs jointly.
Such methods [Nivre, 2008; Zhang and Clark, 2011] cast the
output-building process as a state-transition process, where
states correspond to partial outputs and transition actions
build outputs incrementally. Statistical models are built to
score transition actions using non-local features, and greedy
or beam-search is typically used to address the search chal-
lenge. The method is particularly suitable for joint tasks with
complex search space.

We investigate both discrete models and deep neural net-
works for our joint task. Neural models have been explored
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in a range of tasks of natural language processing (NLP)
[Collobert et al., 2011; Cho et al., 2014; Chen and Man-
ning, 2014]. Compared with discrete models using high-
dimensional features, neural models adopt low-dimensional
dense embedding features, and can effectively settle the fea-
ture sparsity problem. Furthermore, non-linear hidden layers
of neural models can be used to extract salient features and
combine them without any human interventions.

Experimental results on a standard ADE corpus [Gurulin-
gappa et al., 2012] show that the discrete joint model signif-
icantly outperforms a strong pipelined baseline. In addition,
the neural joint model can further improve the performance
over the discrete joint model by significantly boosting the re-
call. With some small modifications, our joint models can
be used for other tasks of entity-relation extraction such as
protein-protein interactions.

2 Related Work
Previous work seperates the task of ADE extraction into
drug/disease entity recognition and ADE relation extraction.
NER models can be directly applied for the first subtask,
and therefore most prior work focuses on the second subtask
[Gurulingappa et al., 2012]. A simple way to extract ADEs
is based on co-occurrence information of drug/disease pairs
[Kandula and Treitler, 2010]. Other approaches use weakly-
supervised techniques such as bootstrapping, whose perfor-
mance depends on seed patterns [Xu and Wang, 2014]. More
sophisticated approaches use supervised learning [Liu et al.,
2014; Li et al., 2015; Yates et al., 2015], and achieve state-of-
the-art performance. We follow this line of work, yet investi-
gating models that jointly identifies entities and relations.

Neural networks have received increasing research atten-
tion in the AI community [Collobert et al., 2011; Bengio
et al., 2015]. In NLP, neural networks typically take low-
dimensional embedding vectors, and use non-linear neural
layers for automatic feature combination. It has achieved
promising results for NLP tasks such as machine translation
[Cho et al., 2014], dependency parsing [Chen and Manning,
2014] and sentiment analysis [Zhang et al., 2015]. Neural
models can not only avoid feature sparsity but also learn non-
local semantic-level features. To our knowledge, we are the
first work to build an information extraction model for jointly
extracting entities and relations using neural networks, par-
ticularly for drug/disease recognition and ADE extraction.

3 Baseline Pipeline System
The baseline pipeline consists of two submodels, namely a
transition-based system for drug/disease recognition and a
max-entropy classifier to determine whether a drug/disease
pair forms an ADE. Following the state-of-the-art models,
discrete features are used in both submodels.

3.1 Drug/Disease Mention Recognition
We use a deterministic transition-based model for
drug/disease entity recognition, where the system con-
sists of a set of states and transition actions. Each state
corresponds to a partial or full output and actions transform
one state to another. For the task of drug/disease recognition,

Features for drug/disease recognition
Word: current word; two words before and after the current
word
POS: POS tags of the current word; POS tags of the two words
before and after the current word
Prefix and suffix: prefix and suffix of the current word; prefixes
and suffixes of the two words before and after the current word
Brown Cluster1: cluster of the current word; clusters of the
two words before and after the current word
WordNet2: synonym and hypernym of the current word; syn-
onyms and hypernyms of the two words before and after the
current word
Ontology: whether the current word is contained by ontology
bases such as HumanDO 3, DrugBank 4, CTD 5 and Jochem 6

Features for ADE extraction
Entity: combinations of the words in both entities involved
Context: two words before each entity mention and two words
after each entity mention
WordNet: combinations of synonyms and hypernyms of the
entity mentions

Table 1: Feature templates.

the state transition system is a standard sequence labeling
system, where the state consists of a label sequence l, and
the actions incrementally label the next unlabeled word. We
define the actions as:

• O, which marks the current word as not belong to either
a drug or disease mention.

• BC, which marks the current word as the beginning of a
drug mention.

• BD, which marks the current word as the beginning of a
disease mention.

• I, which marks the current word as part of a drug or dis-
ease mention but not the beginning.

For example, given a sentence “Gliclazide-induced acute
hepatitis.”, the action sequence “BC O O BD I O” yields the
result “Gliclazidedrug-induced acute hepatitisdisease.”.

We use a maximum-entropy classification model for dis-
ambiguation. Given a certain state, the model predicts the
best next transition action. The feature templates are listed
in the top of Table 1, which include word, POS tags, prefix
and suffix information at the current location and its context.
Semantic features such as WordNet are also utilized.

Following previous work on transition-based NLP [Nivre,
2008; Chen and Manning, 2014], we use greedy search de-
coding for both the baseline and the joint systems. Results
show that the simple and fast search method gives the state-
of-the-art accuracies compared with the previous best results.

1https://github.com/percyliang/brown-cluster
2https://wordnet.princeton.edu/
3https://bioportal.bioontology.org/ontologies/DOID
4http://www.drugbank.ca
5http://ctdbase.org/
6http://biosemantics.org/index.php/resources/jochem
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state <l, ds, dg, s > next action
...... ...
<[BD,O,O,BC], [Hepatitis], [], []> O
<[BD,O,O,BC,O], [Hepatitis], [methotrexate], []> Y
<[BD,O,O,BC,O,Y], [Hepatitis], [methotrexate], [(Hepatitis,methotrexate)]> BC
<[BD,O,O,BC,O,Y,BC], [Hepatitis], [methotrexate], [(Hepatitis,methotrexate)]> O
<[BD,O,O,BC,O,Y,BC,O], [Hepatitis], [methotrexate,etretinate], [(Hepatitis,methotrexate)]> Y
<[BD,O,O,BC,O,Y,BC,O,Y], [Hepatitis], [methotrexate,etretinate], [(Hepatitis,methotrexate),(Hepatitis,etretinate)] > <EOS>

Figure 2: State transition examples, where <EOS> denotes the end of sentence.

3.2 ADE extraction
At the second step in the pipeline, ADEs are extracted by
traversing each drug/disease pair identified in the previous
step, making a binary classification. Because there are no
other entity types in our task, and only an drug/disease pair
can have an ADE relation, we set the traversing strategy to
brute-force enumeration. Only drug/disease pairs need to be
enumerated, and drug/drug or disease/disease pairs are ig-
nored.

We use a maximum-entropy classifier for ADE classifica-
tion. The feature templates are listed in the bottom of Table
1. They consist of words of the entities, their contexts and
semantic features such as WordNet.

3.3 Training
Both subtasks of the pipeline baseline employ a maximum-
entropy model, and we describe their training in one section
for conciseness. Given an input x, probability of an output ci
is denoted as:

p(ci�x) = ewix

∑T
j=1 ewjx

, (1)

where x denotes the feature vector of the input, p(ci|x) de-
notes the conditional probability of the class ci, wi denotes
the i-th row of the parameter matrix W ∈ RT×�x� and T de-
notes the number of classes.

We perform maximum-entropy training for both subtasks.
For drug/disease recognition, the parameter matrix W is
tuned to maximize the likelihood of gold-standard actions
on each word in the training data. For ADE extraction, the
training objective is the likelihood of gold ADE drug/disease
pairs. A general form of training objectives is to maximize:

L(W) = − �E��
j=1

log pgj + �

2

�W�22, (2)

where gj is the gold class of the j-th example, pgj is its prob-
ability and � is the weight parameter for L2 regularization.

Mini-batched AdaGrad [Duchi et al., 2011] is used for
training. For the discrete valued models, our parameter up-
dating method follows Kummerfeld et al. [2015].

4 Discrete Joint Model
For information integration and to reduce error propagation,
the two submodels of the pipeline are merged into a single
discrete joint model, which provides an end-to-end system
that identifies both drug/disease mentions and ADEs given a

sentence. In consistent with the baseline, a maximum-entropy
model with greedy decoding is used for disambiguation.

We leverage a transition-based system for jointly decoding
by extending the baseline drug/disease mention recognition
system. There are two salient differences: first, the states
here include not only drug and disease mentions in a sentence,
but also ADE relations. Second, in addition to the actions
used to recognize entities, the transition system also requires
actions to extract ADE relations. Correspondingly, we define
the state of the joint model as a tuple <l, ds, dg, s >, where
l is a label sequence, ds is a list of readily-recognized disease
entity mentions, dg is a list of readily-recognized drug entity
mentions and s is a set of ADEs. Whenever a new entity has
been recognized, it is correlated to each previously identified
entity mention to decide whether there is an ADE between the
two entities. Two more actions are defined to achieve this.

• N, which indicates that a pair of entities does not have
an ADE relation.

• Y, which indicates that a pair of entities has an ADE
relation.

Given the sentence “Hepatitis caused by methotrexate and
etretinate.”, the action sequence “BD O O BC O Y BC
O Y” yields the result output “Hepatitisdisease caused by
methotrexatedrug and etretinatedrug.”. Note that the two Y
actions are performed after two O actions, which confirms the
finishing of two BC entities, respectively. The first Y action
is applied when the new drug entity mention “methotrexate”
is recognized. At this time, there is only one disease entity
“Hepatitis” in the state component ds, and therefore one N/Y
action is made. Similarly, after the second drug entity “etreti-
nate” is recognized, the disease list ds is iterated again, with
one N/Y action being made since there is only one disease
entity. The relevant state transitions are shown in Figure 2.

For fair comparison with the baseline, we use Equation 1 to
compute the probability of each action, and Equation 2 as the
loss function. The training procedure is similar with that in
Section 3.3, but the main difference is that the joint model has
only one parameter matrix W, which is optimized during the
joint learning procedure, while the baseline pipeline model
has two subtask parameter matrixes trained separately.

4.1 Decoding
Algorithm 1 shows pseudocode of the greedy decoding al-

gorithm, which is a algorithmic description of the state tran-
sition system above. The algorithm processes every word
of a raw sentence from left to right. It firstly recognizes
drug/disease entity mentions based on the current action “t”,
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Algorithm 1 Decoding algorithm of joint models.
Input: A sentence s with words, s1, s2, ..., sN .
Output: A set p of drug/disease entities and ADEs in this sentence.
1: previous action lt, current action t
2: for i = 1 to N do
3: lt ← t
4: // recognize drug/disease entity mentions
5: t ← GETACTION(si, s, p)
6: if t = BC then
7: currentEntity← NEWDRUG(si, s)
8: ADDENTITY(p, currentEntity)
9: else if t = BD then

10: currentEntity← NEWDISEASE(si, s)
11: ADDENTITY(p, currentEntity)
12: else if t = I then
13: currentEntity← GETLASTENTITY(p)
14: APPENDWORD(currentEntity, si, s)
15: // extract ADE relations
16: if ISENTITYEND(lt, t) then
17: for each entity before currentEntity do
18: lt ← t
19: t ← GETACTION(entity, currentEntity, s, p)
20: if t = Y then
21: ADDADE(p, entity, currentEntity)
22: return p

namely BC, BD, I or O, which is given by “GETACTION”
(line 5) considering the current state. Then the algorithm tries
to extract ADEs immediately after an entity mention has been
fully recognized. “ISENTITYEND” uses “lt” and “t” to decide
the recognition of a full mention. For example, if “lt” is BC
and “t” is O, a drug entity has been recognized. After that,
ADEs are extracted by traversing previous entity mentions,
pairing them with the newly-discovered entity mention, and
deciding whether each drug/disease pair has an ADE relation
using Y and N actions, which are given by “GETACTION”
(line 19). Note that if “GETACTION” gives an incorrect action
(e.g., a BC action when extracting ADEs), it will be ignored.
In addition, “GETACTION” (line 5) only extracts features for
drug/disease recognition while “GETACTION” (line 19) only
extracts features for ADE extraction.

4.2 Global Features
The joint model can exploit interactions between features of
the submodels, which is impossible for the pipeline method.
We design global features to further exploit this advantage, as
shown in Table 2, which can be used by the joint model on
top of the local features in Table 1 used by the baseline.

The feature templates 1-4 and 8 in Table 2 capture relations
between a word or drug/disease pair and extracted ADEs,
which can be an important clue for recognizing entities. The
first feature template directly leverages word information for
a partial or full match to the entities of ADEs. The second and
third feature templates conduct a fuzzy match using Brown
clusters or WordNet classes. The fourth template can be a
guidance when a neighboring entity mention of the current
word is contained in an ADE. The eighth template makes use
of the previous ADEs for extracting new ADEs.

The feature templates 5-7 capture coordinating relations,
which can be important features for inferring ADE relations.

Features for drug/disease recognition
1. whether the current word is contained in an extracted ADE
2. whether the Brown cluster of the current word is identical to
that of the word contained in an extracted ADE
3. whether the synonym of the current word is identical to that
of the word contained in an extracted ADE
4. whether the entity before the current word is contained in an
extracted ADE
5. whether the current word has a coordinating relation with an
entity contained in an extracted ADE

Features for ADE extraction
6. whether three entities form the pattern, “A ...... B and C”,
and the pair A-B is an ADE
7. whether three entities form the pattern, “A and B ...... C”,
and the pair A-C is an ADE
8. whether a drug/disease pair is contained in an extracted ADE

Table 2: Global features of the joint models.

Taking template 6 for example, in “Hepatitisdisease caused
by methotrexatedrug and etretinatedrug.”, there is a coordi-
nating relation between “methotrexate” and “etretinate”. If
“Hepatitis” and “methotrexate” have been recognized as an
ADE, “etretinate” should also be associated with “Hepatitis”.
Template 5 and 7 use coordinating relations in various forms.

5 Neural Joint Model
The combination of subtask search candidates can lead to in-
creased feature sparsity in the discrete joint model. A neu-
ral model adopts low-dimensional dense features, and can be
useful in mitigating this problem. We exploit a neural version
of the joint model by replacing the discrete features in our
joint model with neural features.

The framework of neural joint model is similar to the
transition-based deterministic neural parser of Chen and
Manning [2014], as shown in Figure 3. Both models use
feed-forward neural network classifiers to perform greedy
transition-based decoding. However, there are two main dif-
ferences: First, we use a convolutional neural network (CNN)
to represent variable-length features such as multi-word en-
tity mentions, while their features have fixed lengths. Second,
we leverage rectified linear units (RELU) in the hidden layer,
while they use a cube activation function.

5.1 Input layer
The input layer consists of a set of embeddings, which re-
places the features listed in Table 1 and Table 2. As men-
tioned in Section 4.1, when recognizing drug/disease entity
mentions, only features for drug/disease recognition are ex-
tracted while features for ADE extraction are not. Conversely,
features for drug/disease recognition are not extracted when
extracting ADEs.

Simple features such as words or POS tags can be directly
represented as fixed-length embeddings [Chen and Manning,
2014], while variable-length entity features cannot be directly
represented like this. We use a CNN to transform them to
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Gliclazide-induced acute hepatitis.

variable-length
features

fixed-length
features

Input

Figure 3: The neural joint model.

fixed-length embeddings. Given an entity e=e1, e2, ..., eN ,
ei ∈ RD is a D-dimensional word vector corresponding to the
i-th word in the entity. In a convolution layer, a kernel with
a parameter matrix W1 ∈ RH1×CD and bias vector b1 ∈ RH1

convolves the C continuous words ei∶i+C−1 from e1 to eN .
Here H1 is the output unit number of the kernel. To process
all the words in an entity mention, the kernel needs K (K =
N-C+1) separate convolutional actions. For each convolution
k, the kernel output mk is computed as follows:

mk = tanh(W1ei∶i+C−1 + b1), (3)
where D, C and H1 are hyper-parameters of the model.

The final outputs of CNN are computed through a max-
pooling layer by:

fj = max

1�k�Kmkj , (4)

where j indicates the j-th output of the pooling layer, namely
the j-th component of the output vector of CNN.

Finally, the input layer x ∈ RG consists of a concatenation
of vectors [s : f], where f indicates output vector of CNN
and s denotes other fixed-length feature embeddings. G is the
total unit number of the input layer.

5.2 Hidden Layer
The hidden layer makes use of a RELU activation function,
which is defined as:

relu(z) =max(0, z) (5)

Given the input vector x, the hidden layer makes a non-
linear combination, which can be formulated as:

h = relu(W2x + b2), (6)
where W2 ∈ RH2×G is a parameter matrix and b2 ∈ RH2 is
a bias vector. H2 is a hyper-parameter, denoting number of
nodes in the hidden layer.

5.3 Output Layer
The output layer calculates the probabilities of transition ac-
tions, so that the one with the maximum probability is se-
lected. The probability of an action ai is computed by:

p(ai) = softmax(ai) = ew3ih

∑A
j=1 ew3j h , (7)

which is similar with that of the baseline max-entropy model.
Here A is the number of all possible actions given the state,
and w3i denotes the i-th row of parameter matrix W3 ∈
RA×H2 .

For training the neural joint model, Equation 2 is used as
the loss function. Mini-batched AdaGrad for neural models
[Duchi et al., 2011] with dropout [Hinton et al., 2012] is used
to optimize the training objective.

6 Experiments
6.1 Experimental Settings
Data: We use the ADE corpus [Gurulingappa et al., 2012],
which consists of 1644 PubMed abstracts for evaluation.
Sentences in the corpus are divided into two categories,
namely 6821 sentences which contain at least one ADE
drug/disease pair (i.e., ADE sentences), and 16695 sentences
which contain no ADEs. Only ADE sentences annotated with
drug/disease mentions are used in our experiments because
we need to evaluate the performance of both entity recogni-
tion and relation extraction. We evaluate all the models using
10-fold cross-validation, where 10% of the data are used as
the development set, 10% as the test set and the remainder
for training.
Metrics: Standard precision (P), recall (R), F1-measure (F1)
are used for evaluation. An entity is counted as true-positive
only if both its boundary and type are correct. An ADE re-
lation is counted as true-positive only if both the boundaries
and the types of its entities are correct.
Parameters: For all the models, we set the initial AdaGrad
learning rate ↵ and regularization parameter � to 0.01 and
10

−8, respectively. For the neural models, embeddings are
randomly initialized in the range (-0.01, 0.01), and we set the
dimension D to 200 by default. The dropout rate is 0.5. The
window size C of the CNN filter is 2 and the size H1 of the
CNN output layer is 200. The hidden layer size H2 is 200.
As it is infeasible to perform full search for all parameters, the
values are chosen empirically following prior work on neural
networks [Chen and Manning, 2014; Zhang et al., 2015].
Preprocessing: The Stanford CoreNLP toolkit7 is utilized
for preprocessing, such as POS tagging. All the letters are
transformed into lowercase forms.

6.2 Development Results
In Table 3, the performance of the discrete joint model with
only local features is slightly better than that of the base-
line, showing the effectiveness of error propagation reduc-
tion. When the global features are added, the performance
of the discrete joint model is improved significantly. This
demonstrates the important roles of the global features by in-
tegrating entity mention and ADE information, which is en-
abled by the joint model, and not feasible for the baseline
model. The neural joint model achieves the best development
F1 scores, improving recalls drastically with a slight decrease
in precisions.

7http://stanfordnlp.github.io/CoreNLP/
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Method Entity Recognition ADE extraction
P R F1 P R F1

Baseline 78.0 71.8 74.8 60.8 51.6 55.8
Discrete Joint

(local) 78.0 72.0 74.9 60.9 51.9 56.0

Discrete Joint
(+global) 80.5 75.2 77.8 65.7 57.0 61.1

Neural Joint 79.6 79.7 79.7 64.4 63.3 63.9

Table 3: Performance (%) on the development set.

Method Entity Recognition ADE extraction
P R F1 P R F1

Li et al.
[2015] 75.9 71.6 73.6 55.2 47.9 51.1

Baseline 77.8 72.0 74.8 60.7 51.5 55.7
Discrete Joint 80.0 75.1 77.5 65.1 56.7 60.6
Neural Joint 79.5 79.6 79.5 64.0 62.9 63.4

Table 4: Performance (%) on the test set.

6.3 Final Results
There are two main related methods. Kang et al. [2014] pro-
posed a knowledge-based method using the Unified Medical
Language System. Their results cannot be directly compared
with ours since their experimental data were partitioned dif-
ferently from ours and they did not distinguish the ADE rela-
tions from drug-disease-treatment relations. Li et al. [2015]
proposed a joint model using the perceptron algorithm to ex-
tract drug/disease mentions and ADEs simultaneously. Our
experimental settings are similar with theirs, and we compare
our results on the test set with their best reported results.

As shown in Table 4, the performance of our pipelined
baseline is competitive to that of Li et al. [2015]. Our dis-
crete joint model gives the best precisions, and the neural
joint model gives the best recalls and F1 scores. Compared
with Li et al. [2015], our neural joint model improves the
F1 scores in drug/disease recognition and ADE extraction by
about 6% and 12%, respectively. The final results demon-
strate the advantages of the neural model — on the one hand,
two submodels in the joint model can facilitate each other
by making use of their interactions and combining features;
on the other hand, dense neural features can be effective for
overcoming the problem of feature sparsity.

7 Discussion
We compare the baseline with the discrete and neural joint
models by analyzing their error distributions. 10% of the test
data are randomly selected as the analysis data. We divide
the errors into false-positives (FP) and false-negatives (FN),
where an entity is counted as false-positive if its boundary or
type is incorrectly identified, and an ADE relation is counted
as false-positive if its related entity mention boundaries or
types are incorrect. An entity or ADE is counted as false-
negative if it has not been recognized.

The statistics are shown in Table 5, where the discrete
joint model gives the least false-positives and the neural joint
model gives the least false-negatives. This is consistent with

Method Entity Recognition ADE extraction
FP FN FP FN

Baseline 229 286 253 324
Discrete Joint 203 275 226 311
Neural Joint 211 229 248 278

Table 5: Error analysis using randomly selected data.

the overall results in Table 4. Compared with the baseline,
one of the advantages of the discrete joint model is that it can
utilize extracted ADEs for better recognizing entities. For in-
stance, in “Gabapentindrug has been previously reported and
usually consists of anxietydisease, diaphoresisdisease, and
palpitationsdisease”, the last disease “palpitations” is recog-
nized by the discrete joint model but not by the baseline, be-
cause the ADE information between “Gabapentin” and “di-
aphoresis” can be exploited by the joint model. In the dis-
crete joint model, the global features of coordinating relations
are also effective. For example, in “an interaction between
clarithromycindrug and isradipinedrug, potentially increas-
ing the hepatic toxicitydisease”, the ADE between “isradip-
ine” and “hepatic toxicity” is successfully extracted by the
joint model but not by the baseline.

The discrete joint model achieves slightly higher precision
compared with the neural joint model. One important reason
is that its features consist of discrete word patterns, which
fire only when exact matches occur. However, this leads to
lower recall. One of the reasons for the lower false-negatives
of the neural model can be that it can recognize more com-
plex and ambiguous entities. For example, an abbreviation
“NMS” (neuroleptic malignant syndrome) can be recognized
by the neural model but not by the discrete model. A chemi-
cal “6-thioguanine” with mixed digits and letters can also be
recognized correctly. More recognized entities give the neu-
ral model more opportunities to extract ADE relations.

8 Conclusion
We explored joint models to extract drugs, diseases and
ADEs simultaneously. Experimental results on a standard
benchmark corpus show that they are more effective com-
pared to traditional pipeline models. In addition, when dis-
crete features are replaced by the neural features, the per-
formance is further improved significantly. We found that
a crucial reason behind the effectiveness of the neural net-
work model is its improved recall, which is enabled by dense
neural features. Our code is publicly available under GPL at:
https://github.com/foxlf823/ade.
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