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Abstract

We investigate a combination of a tra-
ditional linear sparse feature model and
a multi-layer neural network model for
deterministic transition-based dependency
parsing, by integrating the sparse features
into the neural model. Correlations are
drawn between the hybrid model and pre-
vious work on integrating word embed-
ding features into a discrete linear model.
By analyzing the results of various parsers
on web-domain parsing, we show that the
integrated model is a better way to com-
bine traditional and embedding features
compared with previous methods.

1 Introduction

Transition-based parsing algorithms construct out-
put syntax trees using a sequence of shift-reduce
actions. They are attractive in computational ef-
ficiency, allowing linear time decoding with de-
terministic (Nivre, 2008) or beam-search (Zhang
and Clark, 2008) algorithms. Using rich non-local
features, transition-based parsers achieve state-of-
the-art accuracies for dependency parsing (Zhang
and Nivre, 2011; Zhang and Nivre, 2012; Bohnet
and Nivre, 2012; Choi and McCallum, 2013;
Zhang et al., 2014).

Deterministic transition-based parsers works
by making a sequence of greedy local deci-
sions (Nivre et al., 2004; Honnibal et al., 2013;
Goldberg et al., 2014; Gómez-Rodrı́guez and
Fernández-González, 2015). They are attractive
by very fast speeds. Traditionally, a linear model
has been used for the local action classifier. Re-
cently, Chen and Manning (2014) use a neural net-
work (NN) to replace linear models, and report im-
proved accuracies.

A contrast between a neural network model and
a linear model is shown in Figure 1 (a) and (b).

· · · · · ·

(a) discrete linear (b) continuous NN

· · · · · ·

(eg. MaltParser) (eg. Chen and Manning (2014))

(c) Turian et al. (2010)

· · · · · · · · ·
transform

(d) Guo et al. (2014)

· · · · · ·

(e) this paper

Figure 1: Five deterministic transition-based
parsers with discrete and continuous features.

A neural network model takes continuous vector
representations of words as inputs, which can be
pre-trained using large amounts of unlabeled data,
thus containing more information. In addition, us-
ing an extra hidden layer, a neural network is ca-
pable of learning non-linear relations between au-
tomatic features, achieving feature combinations
automatically.

Discrete manual features and continuous fea-
tures complement each other. A natural question
that arises from the contrast is whether traditional
discrete features and continuous neural features
can be integrated for better accuracies. We study
this problem by constructing the neural network
shown in Figure 1 (e), which incorporates the dis-
crete input layer of the linear model (Figure 1 (a))
into the NN model (Figure 1 (b)) by conjoining
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it with the hidden layer. This architecture is con-
nected with previous work on incorporating word
embeddings into a linear model.

In particular, Turian et al. (2010) incorporate
word embeddings as real-valued features into a
CRF model. The architecture is shown in Figure
1(c), which can be regarded as Figure 1(e) with-
out the hidden layer. Guo et al. (2014) find that
the accuracies of Turian et al can be enhanced by
discretizing the embedding features before com-
bining them with the traditional features. They use
simple binarization and clustering to this end, find-
ing that the latter works better. The architecture is
shown in Figure 1(d). In contrast, Figure 1(e) di-
rectly combines discrete and continuous features,
replacing the hard-coded transformation function
of Guo et al. (2014) with a hidden layer, which
can be tuned by supervised training.1

We correlate and compare all the five systems
in Figure 1 empirically, using the SANCL 2012
data (Petrov and McDonald, 2012) and the stan-
dard Penn Treebank data. Results show that
the method of this paper gives higher accura-
cies than the other methods. In addition, the
method of Guo et al. (2014) gives slightly better
accuracies compared to the method of Turian et
al. (2010) for parsing task, consistent with Guo
et al’s observation on named entity recognition
(NER). We make our C++ code publicly avail-
able under GPL at https://github.com/
SUTDNLP/NNTransitionParser.

2 Parser

We take Chen and Manning (2014), which uses
the arc-standard transition system (Nivre, 2008).
Given an POS-tagged input sentence, it builds a
projective output y by performing a sequence of
state transition actions using greedy search. Chen
and Manning (2014) can be viewed as a neutral
alternative of MaltParser (Nivre, 2008).

Although not giving state-of-the-art accuracies,
deterministic parsing is attractive for its high pars-
ing speed (1000+ sentences per second). Our in-
corporation of discrete features does not harm the
overall speed significantly. In addition, determin-
istic parsers use standard neural classifiers, which
allows isolated study of feature influences.

1Yet another alternative structure is to directly combine
the two types of inputs, and replacing the input layer of (b)
using them. Wang and Manning (2013) compared this archi-
tecture with (c) using a CRF network, finding that the latter
works better for NER and chunking.

3 Models

Following Chen and Manning (2014), training of
all the models using a cross-entropy loss objective
with a L2-regularization, and mini-batched Ada-
Grad (Duchi et al., 2011). We unify below the five
deterministic parsing models in Figure 1.

3.1 Baseline linear (L)
We build a baseline linear model using logistic re-
gression (Figure 1(a)). Given a parsing state x, a
vector of discrete features Φd(x) is extracted ac-
cording to the arc-standard feature templates of
Ma et al. (2014a), which is based on the arc-eager
templates of Zhang and Nivre (2011). The score
of an action a is defined by

Score(a) = σ
(
Φd(x) · −→θ d,a

)
,

where σ represents the sigmoid activation func-
tion,

−→
θ d is the set of model parameters, denoting

the feature weights with respect to actions, a can
be SHIFT, LEFT(l) and RIGHT(l).

3.2 Baseline Neural (NN)
We take the Neural model of Chen and Manning
(2014) as another baseline (Figure 1(b)). Given
a parsing state x, the words are first mapped into
continuous vectors by using a set of pre-trained
word embeddings. Denote the mapping as Φe(x).
In addition, denote the hidden layer as Φh, and the
ith node in the hidden as Φh,i (0 ≤ i ≤ |Φh|). The
hidden layer is defined as

Φh,i =
(
Φe(x) · −→θ h,i

)3
,

where
−→
θ h is the set of parameters between the in-

put and hidden layers. The score of an action a is
defined as

Score(a) = σ
(
Φh(x) · −→θ c,a

)
,

where
−→
θ c,a is the set of parameters between the

hidden and output layers. We use the arc-standard
features Φe as Chen and Manning (2014), which
is also based on the arc-eager templates of Zhang
and Nivre (2011), similar to those of the baseline
model L.

3.3 Linear model with real-valued
embeddings (Turian)

We apply the method of Turian et al. (2010), com-
bining real-valued embeddings with discrete fea-
tures in the linear baseline (Figure 1(c)). Given a
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state x, the score of an action a is defined as

Score(a) = σ
( (

Φd(x)⊕ Φe(x)
)

· (−→θ d,a ⊕−→θ c,a)
)
,

where ⊕ is the vector concatenation operator.

3.4 Linear model with transformed
embeddings (Guo)

We apply the method of Guo et al. (2014), com-
bining embeddings into the linear baseline by first
transforming into discrete values. Given a state x,
the score of an action is defined as

Score(a) = σ
( (

Φd(x)⊕ d(Φe(x) )
)

· (−→θ d,a ⊕−→θ c,a)
)
,

where d is a transformation function from real-
value to binary features. We use clustering of em-
beddings for d as it gives better performances ac-
cording to Guo et al. (2014). Following Guo et
al. (2014), we use compounded clusters learnt by
K-means algorithm of different granularities.

3.5 Directly combining linear and neural
features (This)

We directly combine linear and neural features
(Figure 1(e)). Given a state x, the score of an ac-
tion is defined as

Score(a) = σ
( (

Φd(x)⊕ Φh(x)
)

· (−→θ d,a ⊕−→θ c,a)
)
,

where Φh is the same as the NN baseline. Note
that like d in Guo, Φh is also a function that trans-
forms embeddings Φe. The main difference is that
it can be tuned in supervised training.

4 Web Domain Experiments

4.1 Setting
We perform experiments on the SANCL 2012 web
data (Petrov and McDonald, 2012), using the Wall
Street Journal (WSJ) training corpus to train the
models and the WSJ development corpus to tune
parameters. We clean the web domain texts fol-
lowing the method of Ma et al. (2014b). Au-
tomatic POS tags are produced by using a CRF
model trained on the WSJ training corpus. The
POS tags are assigned automatically on the train-
ing corpus by ten-fold jackknifing. Table 1 shows
the corpus details.

Domain #Sent #Word TA
WSJ-train 30,060 731,678 97.03
WSJ-dev 1,336 32,092 96.88
WSJ-test 1,640 35,590 97.51
answers 1,744 28,823 91.93

newsgroups 1,195 20,651 93.75
reviews 1,906 28,086 92.66

Table 1: Corpus statistics of our experiments,
where TA denotes POS tagging accuracy.
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91

-T +T

(a) WSJ

NN Turian This
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(b) answers
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80
81
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-T +T

(c) newsgroups

NN Turian This

80
81
82
83

-T +T

(d) reviews

Figure 2: Dev results on fine-tuning (UAS).

Following Chen and Manning (2014), we use
the pre-trained word embedding released by Col-
lobert et al. (2011), and set h = 200 for the hidden
layer size, λ = 10−8 for L2 regularization, and
α = 0.01 for the initial learning rate of Adagrad.

4.2 Development Results

Fine-tuning of embeddings. Chen and Man-
ning (2014) fine-tune word embeddings in su-
pervised training, consistent with Socher et al.
(2013). Intuitively, fine-tuning embeddings allows
in-vocabulary words to join the parameter space,
thereby giving better fitting to in-domain data.
However, it also forfeits the benefit of large-scale
pre-training, because out-of-vocabulary (OOV)
words do not have their embeddings fine-tuned.
In this sense, the method of Chen and Manning
resembles a traditional supervised sparse linear
model, which can be weak on OOV.

On the other hand, the semi-supervised learning
methods such as Turian et al. (2010) and Guo et
al. (2014), do not fine-tune the word embeddings.
Embeddings are taken as inputs rather than model
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Model
WSJ answers newsgroups reviews

UAS LAS OOV OOE UAS LAS OOV OOE UAS LAS OOV OOE UAS LAS OOV OOE

L 88.19 86.16 83.72 —– 79.30 74.24 68.43 —– 82.55 79.06 69.07 —– 80.77 76.16 72.20 —–
NN 89.81 87.83 84.94 84.94 79.27 74.30 69.18 69.18 83.71 80.35 69.60 69.60 81.63 77.22 72.04 72.04

Turian 89.17 87.21 84.13 91.35 79.57 74.57 69.60 54.21 82.89 79.65 68.48 52.63 81.33 77.04 72.30 55.03
Guo 89.33 87.21 83.82 90.83 79.32 74.22 67.36 51.76 82.75 79.31 68.18 55.06 81.87 77.25 73.03 56.80
This 90.61 88.68 88.00 93.77 80.08 75.18 69.97 54.21 84.64 81.35 69.66 53.44 82.53 78.15 73.39 57.20

ZPar-local 88.95 86.90 84.63 —– 78.98 73.81 68.15 —– 82.43 79.01 67.30 —– 81.21 76.45 70.38 —–
C&M(2014) 89.56 87.55 79.15 79.15 79.82 74.63 67.78 67.78 83.39 79.72 67.95 67.95 81.60 76.91 68.83 68.83

Table 2: Main results on SANCL. All systems are deterministic.

parameters. Therefore, such methods can expect
better cross-domain accuracies.

We empirically compare the models NN, Turian
and This by fine-tuning (+T) and not fine-tuning
(-T) word embeddings, and the results are shown
in Figure 2. As expected, the baseline NN model
gives better accuracies on WSJ with fine-tuning,
but worse cross-domain accuracies. Interestingly,
our combined model gives consistently better ac-
curacies with fine-tuning. We attribute this to
the use of sparse discrete features, which allows
the model to benefit from large-scale pre-trained
embeddings without sacrificing in-domain perfor-
mance. The observation on Turian is similar. For
the final experiments, we apply fine-tuning on the
NN model, but not to the Turian and This. Note
also tat for all experiments, the POS and label em-
bedding features of Chen and Manning (2014) are
fine-tuned, consistent with their original method.
Dropout rate. We test the effect of dropout (Hin-
ton et al., 2012) during training, using a default ra-
tio of 0.5 according to Chen and Manning (2014).
In our experiments, we find that the dense NN
model and our combined model achieve better per-
formances by using dropout, but the other models
do not benefit from dropout.

4.3 Final Results

The final results across web domains are shown
in Table 2. Our logistic regression linear parser
and re-implementation of Chen and Manning
(2014) give comparable accuracies to the percep-
tron ZPar2 and Stanford NN Parser3, respectively.

It can be seen from the table that both Turian
and Guo4 outperform L by incorporating embed-

2https://sourceforge.net/projects/zpar/, version 0.7.
3http://nlp.stanford.edu/software/nndep.shtml
4We compound six clusters of granularities 500, 1000,

1500, 2000, 2500, 3000.

ding features. Guo gives overall higher improve-
ments, consistent with the observation of Guo et
al. (2014) on NER. Our methods gives signifi-
cantly5 better results compared with Turian and
Guo, thanks to the extra hidden layer.

Our OOV performance is higher than NN,
because the embeddings of OOV words are
not tuned, and hence the model can handle
them effectively. Interestingly, NN gives higher
accuracies on web domain out-of-embedding-
vocabulary (OOE) words, out of which 54% are
in-vocabulary.

Note that the accuracies of our parsers are lower
than the best systems in the SANCL shared task,
which use ensemble models. Our parser enjoys the
fast speed of deterministic parsers, and in partic-
ular the baseline NN parser (Chen and Manning,
2014).

5 WSJ Experiments

For comparison with related work, we conduct ex-
periments on Penn Treebank corpus also. We use
the WSJ sections 2-21 for training, section 22 for
development and section 23 for testing. WSJ con-
stituent trees are converted to dependency trees us-
ing Penn2Malt6. We use auto POS tags consistent
with previous work. The ZPar POS-tagger is used
to assign POS tags. Ten-fold jackknifing is per-
formed on the training data to assign POS auto-
matically. For this set of experiments, the parser
hyper-parameters are taken directly from the best
settings in the Web Domain experiments.

The results are shown in Table 3, together with
some state-of-the-art deterministic parsers. Com-
paring the L, NN and This models, the observa-
tions are consistent with the web domain.

5The p-values are below 0.01 using pairwise t-test.
6http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html
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System UAS LAS
L 89.36 88.33

NN 91.15 90.04
This 91.80 90.68

ZPar-local 89.94 88.92
Ma et al. (2014a) 90.38 –

Chen and Manning (2014) 91.17 89.99
Honnibal et al. (2013) 91.30 90.00

Ma et al. (2014a)? 91.32 –

Table 3: Main results on WSJ. All systems are de-
terministic.

Our combined parser gives accuracies competi-
tive to state-of-the-art deterministic parsers in the
literature. In particular, the method of Chen and
Manning (2014) is the same as our NN baseline.
Note that Zhou et al. (2015) reports a UAS of
91.47% by this parser, which is higher than the
results we obtained. The main results include the
use of different batch size during, while Zhou et
al. (2015) used a batch size of 100,000, we used a
batch size of 10,000 in all experiments. Honnibal
et al. (2013) applies dynamic oracle to the deter-
ministic transition-based parsing, giving a UAS of
91.30%. Ma et al. (2014a) is similar to ZPar local,
except that they use the arc-standard transitions,
while ZPar-local is based on arc-eager transitions.
Ma et al. (2014a)? uses a special method to process
punctuations, leading to about 1% UAS improve-
ments over the vanilla system.

Recently, Dyer et al. (2015) proposed a de-
terministic transition-based parser using LSTM,
which gives a UAS of 93.1% on Stanford conver-
sion of the Penn Treebank. Their work shows that
more sophisticated neural network structures with
long term memories can significantly improve the
accuracy over local classifiers. Their work is or-
thogonal to ours.

6 Related Work

As discussed in the introduction, our work is re-
lated to previous work on integrating word embed-
dings into discrete models (Turian et al., 2010; Yu
et al., 2013; Guo et al., 2014). Along this line,
there has also been work that uses a neural net-
work to automatically vectorize the structures of
a sentence, and then taking the resulting vector
as features in a linear NLP model (Socher et al.,
2012; Tang et al., 2014; Yu et al., 2015). Our re-
sults show that the use of a hidden neural layer

gives superior results compared with both direct
integration and integration via a hard-coded trans-
formation function (e.g binarization or clustering).

There has been recent work integrating contin-
uous and discrete features for the task of POS
tagging (Ma et al., 2014b; Tsuboi, 2014). Both
models have essentially the same structure as our
model. In contrast to their work, we systemati-
cally compare various ways to integrate discrete
and continuous features, for the dependency pars-
ing task. Our model is also different from Ma et
al. (2014b) in the hidden layer. While they use a
form of restricted Boltzmann machine to pre-train
the embeddings and hidden layer from large-scale
ngrams, we fully rely on supervised learning to
train complex feature combinations.

Wang and Manning (2013) consider integrat-
ing embeddings and discrete features into a neu-
ral CRF. They show that combined neural and dis-
crete features work better without a hidden layer
(i.e. Turian et al. (2010)). They argue that non-
linear structures do not work well with high di-
mensional features. We find that using a hid-
den layer specifically for embedding features gives
better results compared with using no hidden lay-
ers.

7 Conclusion

We studied the combination of discrete and con-
tinuous features for deterministic transition-based
dependency parsing, comparing several methods
to incorporate word embeddings and traditional
sparse features in the same model. Experiments
on both in-domain and cross-domain parsing show
that directly adding sparse features into a neural
network gives higher accuracies compared with all
previous methods to incorporate word embeddings
into a traditional sparse linear model.
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