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Abstract

It has been shown that learning distributed word repre-
sentations is highly useful for Twitter sentiment classi-
fication. Most existing models rely on a single distribut-
ed representation for each word. This is problematic for
sentiment classification because words are often poly-
semous and each word can contain different sentiment
polarities under different topics. We address this issue
by learning topic-enriched multi-prototype word em-
beddings (TMWE). In particular, we develop two neu-
ral networks which 1) learn word embeddings that bet-
ter capture tweet context by incorporating topic infor-
mation, and 2) learn topic-enriched multiple prototype
embeddings for each word. Experiments on Twitter sen-
timent benchmark datasets in SemEval 2013 show that
TMWE outperforms the top system with hand-crafted
features, and the current best neural network model.

Introduction
Twitter sentiment classification, which classifies the senti-
ment polarity of a tweet as positive, neutral or negative,
has received much research attention in recent years (Jiang
et al. 2011; Liu 2012; Hu et al. 2013; Tang et al. 2014).
Most existing work follows Pang et al. (2002) and Go et
al. (2009), treating Twitter sentiment classification as a spe-
cial case of text classification, and investigating the use of
effective features (Pang and Lee 2008; Maas et al. 2011;
Owoputi et al. 2012; Labutov and Lipson 2013). In partic-
ular, Mohammad et al. (2013) build the top-performing sys-
tem in the Twitter sentiment classification track of SemEval
2013 (Nakov et al. 2013), using diverse sentiment lexicons
and a variety of hand-crafted features. Tang et al. (2014) pro-
pose sentiment-specific word embedding, which gives better
performance compared with the current best system using
diverse word representations.

Existing word embedding models for Twitter sentimen-
t classification, however, have two limitations. On the one
hand, one embedding is generated for each word, despite
that sentiment-baring words may be polysemous. On the
other hand, most methods ignore topic information of the
tweet in the word embedding space, which determines the
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meaning of polysemous words. For example, two tweets
from the SemEval 2013 dataset are given below, with the
word “offensive” appearing in different sentiment polarities.

• Monday before I leave Singapore, I am going to post
something that might be offensive. (NEGATIVE)

• #Patriots Tom Brady wins AFC offensive player of the
week for 22nd time.... http://t.co/WlFHyQ0I – #NFL
(POSITIVE)

The same opinion expression “offensive” demonstrates dif-
ferent sentiment polarities in the above two tweets, because
the topics are different.

In this paper, we show that significant improvements can
be achieved by using topic-enriched multi-prototype word
embeddings. First, we build a baseline system using neural
network, which has been shown to give competitive results
compared with traditional linear models (Socher et al. 2013;
dos Santos and Gatti 2014). The baseline model learns word
embedding features by incorporating both local (n-gram)
and global context (sentiment and topic distribution). It gives
comparable results to the best models in the literature. Sec-
ond, we extend the baselines system to learn multiple em-
beddings for each word, which gives better performance. Fi-
nally, performance can be further improved by integrating
our proposed model and the current best model using diverse
word representations.

Compared with the baseline, the final system improves
two-category classification performance on the standard Se-
meval 2013 dataset from 82.17% to 87.97% in macro-F s-
core. The result is significantly higher compared with the
best results from the SemEval 2013 participants (84.73%)
and the best reported result on the same dataset (84.98%).

Related Work
Existing methods on Twitter sentiment analysis focus on
feature engineering. The performance of a sentiment clas-
sifier is heavily dependent on the choice of feature repre-
sentations. Pang et al. (2002) pioneer this field by using
bag-of-word feature representations. Many different feature
learning methods are proposed subsequently to obtain bet-
ter performance (Pang and Lee 2008; Liu 2012; Owoputi et
al. 2012; Feldman 2013; Mohammad, Kiritchenko, and Zhu
2013).



Recent studies investigate learning low-dimensional,
dense and real-valued word embedding vectors for senti-
ment classification. Maas et al. (2011) propose a probabilis-
tic document model following Blei et al. (2003). Labutov
and Lipson (2013) re-embed words from existing word em-
beddings. Tang et al. (2014) develop three neural network
models to learn word vectors from tweets containing pos-
itive and negative emoticons. These methods have shown
promising results when combined with linear or neural clas-
sifiers (Tang et al. 2014; Vanzo, Croce, and Basili 2014).

Our work is also related to learn multi-prototype word
embeddings. Huang et al. (2012) propose to leverage global
contextual information and multi-prototype embeddings to
achieve performance gains on word-similarity tasks. Tian et
al. (2014) propose to learn multiple embedding vectors for
polysemous words from a probabilistic perspective, by de-
signing an Expectation-Maximization algorithm. However,
for Twitter sentiment classification, existing work focuses on
learning single-prototype word embeddings. We propose to
learn topic-enriched multi-prototype word embeddings for
Twitter sentiment classification, using the embedding frame-
work of Collobert et al. (2011) and Tang et al. (2014).

Learning Multi-Prototype Word Embeddings
for Twitter Sentiment Classification

We propose to learn topic-sensitive representations for
words by integrating topic information, using the algorith-
m of Collobert et al. (2011) to learn different types of
embeddings. Two embedding models are developed. First,
the single-prototype embedding approach of Collobert et
al. (2011) is extended by incorporating topic information,
demonstrating the influence of such information on Twitter
sentiment analysis. Second, the embedding method is further
extended by allowing multiple prototypes for each word, ful-
ly leveraging topic information in each prototype. Following
Tang et al. (2014), we also incorporate sentiment informa-
tion into a word.

C&W Model
Collobert et al. (2011) build a neural model to learn word
embeddings from n-gram contexts. When training embed-
ding for the word wc using n-grams, wc is replaced with
random word wr to form corrupted n-grams. The training
objective is that the score of original n-gram should be larger
than the score of corrupted n-gram by a margin of 1 accord-
ing to a neural network. This ranking objective function can
be optimized by using a hinge loss,

losssyn(t
c) = max(0, 1− fsyn(tc) + fsyn(tr)) (1)

where tc is the original n-gram, tr is the corrupted n-gram
and fsyn(·) represents the n-gram score computed by the
neural network.

Figure 1(a) shows the C&W model using a simple three-
layer neural network. From the bottom, the first layer is a
lookup layer, where the representation Lt of each wordwt is
looked up in a dictionary L. Then a linear transformation is
applied to the concatenation of all the word embeddings in a
fixed-size window. Assuming that the word embedding size

is s, the length of hidden layer is h and the window size is
m, a hTanh layer is used on top of the linear transformation
layer to obtain,

a = h1(W1 ∗ [L1;L2; · · ·;Lm] + b1) (2)

where W1 ∈ Rh×(s∗m), b1 ∈ Rh, and h1(·) is the activation
function. The final n-gram score is computed as:

fsyn(t) =W2 ∗ a (3)

where W2 ∈ R1×h. No bias term is used here.
After the scores for both the original and the corrupted n-

grams are obtained, the cost by the hinge loss function can
be computed.

Topic-Enriched Word Embeddings
The C&W model captures the semantic relation between
words in local contexts, which is proved useful in many NLP
tasks (Turian, Ratinov, and Bengio 2010; Zhang and Zhang
2015), but is not directly oriented for sentiment classifica-
tion. To address the problem, Tang et al. (2014) propose to
modify the original C&W model, using the sentiment polar-
ity of a tweet to augment the loss function (SSWE), which
is shown in Figure 1(b). SSWE demonstrates the effective-
ness of sentiment information in word embeddings for Twit-
ter sentiment classification. Following the neural network
structure of Tang et al. (2014), we further integrate local (n-
gram) and global context (sentiment, topic distribution) to
learn word embeddings. Topic information has been shown
useful for Twitter sentiment classification (Xiang and Zhou
2014). We develop two basic models (i.e. TEWE, TSWE)
by integrating different global information into the neural
networks.

Model 1 (TEWE) An intuitive solution to integrate topic
information is predicting the topic distribution of text based
on input n-grams. Assuming that there are M topics, we ad-
d a hidden layer of M nodes under the top softmax lay-
er, and additionally predict the topic in the output layer.
The neural network is given in Figure 1(c). Unlike C&W,
our embedding (Topic-Enriched Word Embedding, TEWE)
does not generate any corrupted n-grams. Let gtop(t) be
the gold M -dimensional multinomial distribution of input
t (
∑M

j=1 g
top
j (t) = 1). Here, the topic distribution gtop(t) is

generated using LDA (Blei et al., 2003). The cross-entropy
loss of the softmax layer is shown in Equation (4):

f top(t) = softmax(Wt ∗ a+ bt)

losstop = −
M∑
i=1

f topi (t) ∗ log(gtopi (t))
(4)

Model 2 (TSWE) The sentiment (SSWE) and topic
(TEWE) of a Tweet are related semantically. In Figure 1(d),
we build a neural network, incorporating both sentiment and
topic information into the C&W model. We add two softmax
output layers, one for sentiment distribution and the other for
topic distribution, as introduced in formula (4) and (5), re-
spectively. Let gsen(t) be the gold K-dimensional multino-
mial distribution of input t, and

∑K
k=1 g

sen
k (t) = 1, where



Figure 1: The C&W, SSWE models and our neural networks (TEWE and TSWE) for learning word embeddings.

K denotes the number of sentiment categories. The cross-
entropy loss of the softmax layer is:

fsen(t) = softmax(Ws ∗ a+ bs)

losssen = −
K∑
j=1

fsenj (t) ∗ log(gsenj (t))
(5)

where gsen(t) represents the gold sentiment label.
In addition, we also capture n-gram information. The to-

tal loss of Topic and Sentiment-Enriched Word Embedding
(TSWE) is a mixture of n-gram, topic and sentiment loss:

J =
1

N

∑
t

[α ∗ losssen(t) + β ∗ losstop(t)

+(1− α− β) ∗ losssyn(t)]
(6)

where α and β are linear interpolation weights.

Model Training To train TEWE and TSWE, we crawl
10M tweets, which include 5M tweets with positive emoti-
cons and 5M with negative emoticons. We train TEWE and
TSWE by taking the derivatives of the loss through back-
propagation with respect to the whole set of parameters
(Collobert et al. 2011), and using AdaGrad (Duchi, Hazan,
and Singer 2011) to update the parameters. We empirically
set the window size as 3, the embedding length as 50, the
length of hidden layer as 100, the activation functions h1 as
tanh, and the initial learning rate of AdaGrad as 0.1.

Multi-Prototype Word Embeddings
Topic-enriched embeddings (TEWE and TSWE) incorpo-
rate non-local tweet context into distributed word repre-
sentations, thereby improving the performance of sentiment
classification. However, they do not fully exploit the advan-
tage of topical context, because polysemous words have the
same embeddings under varying contexts.

In order to learn multiple prototype embeddings, we first
identify polysemous words, by simply using a frequency
threshold, which is set three times of the prototype num-
ber p. For each instance of high-frequency words, we cal-
culate an “environment vector” Env, which consists of idf -
weighted average word embeddings in the context, and the

topic information:

Env = [
∑

i∈context
Li ∗ idfwi

; gtop] (7)

Here, Li denotes the embedding of wi in the context, which
is consistent with Equation 2. The context is the word em-
beddings computed in the TSWE model over the tweet. Af-
ter obtaining Env for all the instances of a word, we conduct
k-means clustering on the vectors, where the distance is de-
fined as the cosine distance:

d(Env1, Env2) = 1− Env1 ∗ Env2
||Env1|| · ||Env2||

(8)

In our model, p is set to 10. Based on the k-means results,
the model generates 10 initial prototypes for high-frequency
words. We then reduce the number of prototypes for some
words by merging clusters when the distances between the
clustering centers are sufficiently close (i.e. ≤ δ). After this
step, a cluster is regarded as a prototype. The final center of
each cluster is recorded.

Finally, the embedding dictionary is extended to contain
different cluster centers of the same words, and the corpus
is relabeled with the new dictionary. The new corpus and
dictionary are used in the TEWE and TSWE models to train
word embeddings with multiple prototypes (M-TEWE and
M-TSWE), respectively. We can generate 6-8 prototypes for
each word on average.

Sentiment Classification Model
We conduct sentiment classification using a convolutional
neural network. Shown in Figure 2, it consists of five layer-
s, including an input layer, a convolutional layer, a pooling
layer, a non-linear hidden layer for feature combination and
an output layer.

Input layer
Nodes of the input layer denote words in the tweet in their
written order. For each word wi, we first compute the Env
vector based on its context and the topic distribution of the
sentence. Then we compare the Env vector with all cluster



Figure 2: Convolutional neural network for Twitter senti-
ment classification.

centers of multiple word prototypes, and find the best proto-
type for the word wi. We use a look-up matrix E to obtain
its embedding e(wi) ∈ RD×1, where E ∈ RD×V is a model
parameter, D is the word vector dimension and V is the vo-
cabulary size. In this paper, E is obtained via the TEWE or
TSWE model over raw corpus.

Convolution layer
The convolution action has been commonly used in neu-
ral networks to synthesize lexical n-gram information (Col-
lobert et al. 2011). Because n-grams have been shown use-
ful for Twitter sentiment analysis (Mohammad, Kiritchenko,
and Zhu 2013)(dos Santos and Gatti 2014), we apply them
to our neural network. Given the input layer node sequence
e(w1) · · · e(wn), we use the convolution operation to obtain
a new hidden node sequence ~h1

1 · · ·~h1
n according to the fol-

lowing equation:
~h1
i = tanh(W1 · [e′(wi−1), e

′(wi), e
′(wi+1), 1]

′),

where e′ denotes the transpose of the vector e, W1 ∈
RC×(3D+1) is a model parameter, and C is the output di-
mension. We consider a window size of 3 to combine word
embedding features, and use tanh as the activation function
for this hidden layer.

Pooling layer
We exploit pooling techniques to merge the varying number
of features from the convolution layer into vectors with fixed
dimensions. The most common pooling technique is the max
function, which chooses the highest value on each dimen-
sion from a set of vectors. On the other hand, min and aver-
age pooling have also been used for sentiment classification
(Tang et al. 2014; Vo and Zhang 2015), giving significant
improvements. We consider all the three pooling methods,
concatenating them as a new hidden layer ~h2. Formally, the
values of ~h2 is defined as:

~h2 =
[max(~h1

i1)
· · ·

max(~h1
iC)

′ ,
min(~h1

i1)
· · ·

min(~h1
iC)

′ ,
avg(~h1

i1)
· · ·

avg(~h1
iC)

′ ],

where ~h1
ij denote the jth dimension of ~h1

i .

Hidden layer
We use a non-linear hidden layer to automatically combine
the max, min and average pooling features. The value of the
hidden layer can be computed as:

~h3 = tanh(W2 ·
[
~h2

1

]
),

where W2 ∈ RH×(3C+1) is a model parameter, and H is the
size of this layer.

Output layer
Finally, an output layer is applied to score all possible labels
according to the features in the hidden layer. The output is
computed using a linear transformation:

~o = Wo · ~h3,

where Wo ∈ R2×H is the model parameter for output layer.

Training
Our training objective is to minimize the cross-entropy
loss over a set of training examples (xi, yi)|Ni=1, plus a l2-
regularization term,

L(θ) = −
N∑
i=1

log
e~o(yi)

e~o(0) + e~o(1)
+
λ

2
‖ θ ‖2,

where θ is the set of model parameters, including W1, W2

and Wo. We use online AdaGrad (Duchi, Hazan, and Singer
2011) to minimize the objective function, with an initial
learning rate of 0.01. We follow Glorot et al. (2010) and
initialize all the matrix and vector parameters with unifor-
m samples in (−

√
6/(r + c),−

√
6/(r + c)), where r and

c are the numbers of rows and columns of the matrixes, re-
spectively.

Experiments
We evaluate our proposed embeddings by incorporating
them into the neural classifier for Twitter sentiment analy-
sis. We also evaluate the effectiveness of TSWE by measur-
ing word similarity in the embedding space for sentiment
lexicons.

Dataset and Evaluation
We conduct experiments on the Twitter sentiment classifica-
tion benchmark in SemEval 2013 (Nakov et al. 2013). The
training and development sets cannot be fully downloaded,
because some tweets were not available due to modified au-
thorization status1. The test set is directly provided to the
participants. The distribution of our dataset is given in Ta-
ble 1. We train the CNN sentiment classifier on the training
set, tune parameters on the development set and evaluate the
final model on the test set. The classification results are mea-
sured by macro-F scores.

1we downloaded the tweets on 10/17/2014



Positive Negative Neutral Total
Train 2,631 986 3,420 7,037
Dev 397 208 482 1,087
Test 1,534 587 1,614 3,735

Table 1: Statistics of the SemEval 2013 Twitter sentiment
classification dataset.

Type #parameter
Network structure D = 50, C = 100, H = 50

Training λ = 10−8, η = 0.01

Table 2: Hyper-parameter values in the final model.

Hyper-Parameters
There are five hyper-parameters in the final model, including
the network structure parameters (i.e. the sizes of word vec-
tors D and the output dimensions of the word convolution
layer C, the output dimension of the non-linear combination
layer H), the parameters for supervised training (i.e. the l2-
regularization co-efficient λ and initial learning rate η for
AdaGrad). The values of the parameters are set according to
common values in the machine learning literature, shown in
Table 2.

Baseline Methods
We re-implement the following sentiment classification al-
gorithms as the baseline systems:

• SSWE: Tang et al. (2014), who apply SSWE as features
for the model of SVM Twitter sentiment classification.

• NRC: the state-of-art system in the SemEval 2013 Twitter
Sentiment Classification Track, incorporating diverse sen-
timent lexicons and hand-crafted features (Mohammad,
Kiritchenko, and Zhu 2013).

Experimental Results
Single-prototype word embeddings Table 3 shows the
macro-F scores of different embeddings. C&W is relative-
ly weak because it does not explicitly exploit sentiment or
topic information, resulting in words with opposite polari-
ties (i.e. good and bad) being mapped to close word vectors.
TEWE improves the performance compared with C&W, and
the main reason is that the TEWE model contains the topic
information of each tweet. Our finding is consistent with X-
iang and Zhou (2014), in that topic information improves
sentiment classification. NRC implements a variety of fea-
tures and reaches 84.73% in macro-F score, demonstrating
the importance of a better feature representation for Twitter
sentiment classification. Compared with SSWE, we achieve
85.34% by using TSWE as features, which indicates the ef-
fectiveness of topic information in the word embedding s-
pace for Twitter sentiment classification.

Methods Macro-F score (%)

SI
N

G
L

E C&W 67.75
TEWE 82.17

SSWE (The Current Best) 84.98
TSWE 85.34

M
U

LT
I M-C&W 72.37

M-TEWE 83.64
M-SSWE 86.10
M-TSWE 86.83

NRC (Top System in SemEval) 84.73
M-TSWE+NRC 87.97

Table 3: Macro-F score based on different word embeddings.

Multi-prototypes word embeddings For multiple word
embeddings, Table 3 shows the performance using differ-
ent types of baseline embeddings. We can see that M-C&W
gives a 4.62% improvement in micro-F score compared with
C&W. In addition, M-TEWE and M-TSWE give the better
performance than TEWE and TSWE, which demonstrates
the effectiveness of multiple prototype word embeddings.
M-TSWE gives a 86.83% macro-F score, outperforming the
current best model SSWE (84.98%), which again shows the
effectiveness of multi-prototype word emebeddings.

To achieve the best performance, we build a combined
model in the classifier level to directly unify M-TSWE and
NRC. For each model, we calculate the probability P (c|x)
for both class c and each tweet x in dataset. After that, we
calculate the probability estimate of the union model by:

Pcomb(ci|x) = 0.5× PTMWE(ci|x) + 0.5× PNRC(ci|x)
(9)

Finally, the combined model predicts the sentiment class of
a tweet x to be the class c with higher probability estimate
Pcomb(c|x). Shown in Table 3, the combined model further
improves the performance to 87.97%, which is the best per-
formance on the SemEval 2013 dataset.

The influence of n-gram, topic and sentiment For M-
TSWE, we tune the hyper parameters α and β on the de-
velopment set. As given in Equation 6, α is the weighting
score of sentiment loss of model, and β is the weighting s-
core of topic loss of model. M-TSWE is trained from 10M
distant-supervised tweets.

Figure 3 shows the macro-F scores of M-TSWE with d-
ifferent α and β on our development set. We can see that
M-TSWE gives better performance when α = β = 0.3,
which balances n-gram, sentiment information and topic in-
formation. The model with α = 0 and β = 0 stands for
M-C&W. The sharp decline reflects the importance of sen-
timent information and topic information in learning word
embeddings for Twitter sentiment classification. Compared
with M-C&W model, The model with α = 0.5 and β = 0.5
gives lower performance, which shows the importance of n-
gram information. As a result, we set α and β to 0.3 in our
final experiments.
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Figure 4: Macro-F scores with different topic numbers τ .

Effect of topic number on M-TSWE In this paper, we
obtain the topic distribution for all tweets based on LDA.
We examine the impact of the different topic numbers (from
10 to 30) on the overall performance.

Figure 4 shows the macro-F score of M-TSWE with d-
ifferent topic numbers τ on our development set. The per-
formance gradually increases as the topic number increases
from 10 to 20. However, the performance reduces as the top-
ic number decreases from 20 to 30. As a result, we set the
number to 20 in our final experiments.

M-TSWE merges clusters by the distance δ. We experi-
ment with different δ (from 0.05 to 0.25) measuring the clas-
sification performance. Results show that when δ is set to
0.16, M-TSWE gives the best performance. As a result, we
set 0.16 to δ in the final model. Here, we omit the detailed
figures due to space limitations.

Word Similarity of Sentiment Lexicons
To show the effectiveness of topic information for Twitter
sentiment classification, we measure word similarity in the
embeddings for sentiment lexicons. Following Tang et al.
(2014), the performance is measured by the accuracy of po-
larity consistency between each sentiment word and its top
100 closest words in the sentiment lexicon.

Experimental Setup Two widely-used sentiment lexicon-
s, HL (Hu and Liu 2004) and MPQA (Wilson, Wiebe, and
Hoffmann 2005), are used for evaluating the quality of word
embeddings. In each lexicon, the words that do not appear

Lexicon Positive Negative Total

HL 1,329 2,644 3,973
MPQA 1,926 2,811 7,737

Table 4: Statistics of the sentiment lexicons.

Lexicon Random C&W TEWE SSWE TSWE

HL 50.00 64.72 75.01 77.18 79.96
MPQA 50.00 59.33 68.71 71.39 72.07

Table 5: Polarity consistency of words in different lexicons.

in the embedding lookup table are removed. The details of
the lexicons used in this paper are listed Table 4.

Results The results are shown in Table 5. The accura-
cy of random vectors is 50%. Our proposed model TSWE
gives 79.96% and 72.07% in HL and MPQA, respectively,
which outperform the current best model SSWE (Tang et al.
2014). Results show that topic and sentiment-enriched word
embeddings can distinguish words with opposite sentiment
polarity, which are not well resolved by the C&W model.
TEWE also gives better performance compared with C&W.
The above demonstrates the effectiveness of topic informa-
tion in word embeddings for Twitter sentiment classification.

Case Study We present some cases on word embeddings
generated by the experiments. We define the sentiment dis-
tance between two embeddings x1 and x2 as:

dsen = 1− cos < x1, x2 > (10)

Among the word embeddings generated by TSWE, SS-
WE and C&W, we select three pairs of antonyms and cal-
culated their sentiment distance, which is shown in Table 6.
For sane and insane, the contexts are alike, and the glob-
al tweet sentiment information hardly distinguishes them,
because the two words occur in both positive and negative
environments. However, when topic information is added,
the distance between the two words is enlarged because they
have different usages in different topics. insane is often used
in daily topics such as movie and sports, while sane is often
used in formal topics like economy and health. The other
two groups of antonyms are similar, illustrating that topic
information can increase the sentiment distance between the
words with opposite polarities.

Conclusion
We proposed to learn topic-enriched multi-prototype word
embeddings for Twitter sentiment classification. First, two
neural networks are developed to learn different word em-
bedding by integrating topic and sentiment information to
fully capture the topic. Second, multiple word embeddings
were generated for every word. Finally, a convolutional neu-
ral network model was used to incorporate multiple word
embeddings to conduct Twitter sentiment classification. Ex-
periments on Twitter sentiment analysis on standard Se-
mEval 2013 data showed the effectiveness of topic informa-
tion and multi-prototype embeddings.



Words C&W SSWE TSWE

sane, insane 0.1997 0.2904 0.4443
waste, improve 0.1761 0.2108 0.2639
complex, simple 0.1938 0.3318 0.6763

Table 6: Distance between antonyms in different models.
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